India, being an agrarian society has a vast resource of livestock which plays an important role in the national economy. The estimated milk production during 2010-11 was 121.8 million tones. Approximately 204.5 million cattle (20% of the world population) and 83.5 million buffalo (50% of the world population) are frequently exposed to several endemic diseases, including brucellosis, in India (Anon, 1997). The prevalence of brucellosis in cattle farm has long been recognized (Anon, 1918), and several studies have confirmed widespread prevalence in different states in India (Chandramohan et al., 1992; Jagapur et al., 2013). In India, the occurrence of brucellosis is to the extent of 10% in marginal herd and 50 per cent in organized farms and the economic
impact of this disease was estimated to be Rs 500 Crores annually (Rajashekhar, 1995). Major economic loss due to this organism occurs because of abortion, loss of calves, reduced milk yield in females and infertility in males (WHO, 1971).

Brucellosis is contagious and common zoonotic bacterial disease of livestock (Munir et al., 2010) and continues to be of great health concern and economic importance in worldwide. Bovine brucellosis is usually caused by *Brucella abortus*, less frequently by *Brucella melitensis* and rarely by *Brucella suis*. *Brucella* is gram-negative, non-spore-forming, facultative, intracellular bacteria (Jagapur et al., 2013). The alternative methods involving caused by bacteria which affects both cattle and buffaloes serological tests are easy, safe, and less time and resource equally. This organism is also important causal agent of brucellosis in humans (Gul and Khan, 2007). Infection in animals frequently results in abortion and diminished milk production (Cutler et al., 2005). Its zoonotic importance and secretion of Brucella organism in milk increase the interest of researchers to know the prevalence of this organism at local farms.

The control of bovine brucellosis is possible only by accurate diagnosis of the disease at the appropriate time. Diagnostic methods include direct tests, involving isolation of bacteria or DNA detection by polymerase chain reaction (PCR) or loop mediated isothermal amplification (LAMP) methods. Indirect test includes serological tests, which are applied in vitro using milk or plasma or serum and allergic test done in vivo in suspected animals. Serology can be used for a presumptive diagnosis of brucellosis, or to screen herds.

The isolation and characterization of *Brucella* organism is the gold standard confirmative diagnosis of brucellosis (Godfroid et al., 2010). *Brucella* spp. can be isolated on a variety of plain media, or selective media such as Farrell’s medium or Thayer-Martin’s modified medium. Enrichment techniques can also be used. *Brucella* colonies usually become visible after two days growth. Keeping the above facts in view, the present study was under taken to assess the status of brucellosis in cattle by examining serum and milk. Brucellosis causing organisms were isolated and characterized to find out the exact distribution of individual species of Brucella organism in the study area.

Materials and Methods

Chemicals, media and glassware

In the present study, properly cleaned, neutral and standard glass wares and plastic wares were used for isolation and diagnostic protocols. *Brucella* agar base, *Brucella* selective supplement, MacConkey agar (MA), Motility test medium, broth base, Brain heart infusion broth and Gram’s stain were purchased from Hi-media, Mumbai, India. Kovac’s reagent was prepared by dissolved 2 gm dimethyaminobenzaldehyde in 30 ml isoamyl alcohol, added 100 ml concentrated hydrochloric acid, mixed well and stored at 2 to 8 °C.

The RBPT antigen, *Brucella* STAT antigen, ABR Antigen and *Brucella abortus* positive serum were obtained from Division of Biological Products, Indian Veterinary Research Institute (I.V.R.I.), Izatnagar, Uttar Pradesh, India.

Sample collection

The study was conducted in the different parts of the Jammu region of North India. A total of 160 blood samples were collected randomly from organized (n = 23) and unorganized (n = 137) cattle farms to detect anti-Brucella antibodies. Brucella organism isolation study was done on 20 milk samples from sero-positive animals.

Serum

A total of 160 serum samples were collected from cows for serological testing viz., Rose Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). For serum sample collection, about 9 ml of blood was collected aseptically by jugular vein puncture of individual animal using sterilized disposable syringe and later transferred to serum separation vial (vacutainer). These vials were kept handled as described by manufacturer. The separated serum was collected in a screw capped plastic vials and transported to the laboratory. The sera were stored at
-20°C till further use. Collected serum samples were subjected to RBPT and STAT.

Milk

A total of 10 milk samples from cows showing positive or doubtful reactions in RBPT or STAT, was subjected to Milk Ring Test (MRT). For the milk collection, the udder was thoroughly washed and cleaned with potassium permanganate solution (1:1000) and dried with clean cloth. Disinfection of the teat openings was done with 70 per cent of ethyl alcohol. After discarding few drops of milk, approximately 10 ml of milk from each quarter was collected in sterile screw capped plastic vial and transported on the ice to the laboratory. One fraction of milk was used for MRT and rest was kept at -20°C for future use in cultural isolation.

Diagnostic tests

Rose Bengal Plate Test (RBPT)

Serum sample and RBPT antigen were brought to the room temperature and then one drop (0.03 ml) of serum was taken on a clean, dry and non greasy glass slide by micropipette. The antigen bottle was shaken well to ensure homogenous suspension and then one drop (0.03 ml) of the antigen was added. The antigen and serum were mixed thoroughly for four min along with continuous slide rotation. The result was noted immediately after four min. Definite clumping/agglutination was considered as positive reaction, where as no clumping / agglutination was considered as negative.

Standard Tube Agglutination Test (STAT)

For STAT, each serum sample was diluted using 0.5 per cent phenol saline. In general, a minimum of eight dilutions were used and for high titer sera, higher dilutions were prepared in order to achieve end point titer. Eight agglutination tubes were placed in a rack. 0.8 ml of 0.5 per cent phenol saline was taken in a first tube and 0.5 ml in rest of the tubes. 0.2 ml of serum was added in the first tube, mixed well and 0.5 ml of diluted serum was transferred to the next tube. Again, mixing and transfer of 0.5 ml of diluted fraction was followed. The process was repeated up to the eighth tube. 0.5 ml of diluted serum from the last tube was discarded. 0.5 ml of homogenous antigen was added to each tube and mixed thoroughly. This provided the final dilutions of serum as 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640 and 1:1280. All the tubes were incubated at 37°C for 20 h before result was recorded. After incubation, the contents of tubes were compared with a control, prepared by mixing 0.5 ml of antigen with 1.5 ml of 0.5 per cent phenol saline in an agglutination tube, simulating 50 per cent agglutination. The tube showing ≥ 50 per cent agglutination was selected for calculating end titer. The degree of agglutination was judged by opacity of the supernatant fluid. The highest serum dilution showing 50 per cent or more agglutination (50% clearing) was considered for calculation of titer of serum. The results were expressed in terms of International Unit (I.U.) per ml of serum by multiplying the reciprocal of serum dilution of selected tube with two. 80 I.U. per ml or above was considered positive for brucellosis.

Milk Ring Test (MRT)

The MRT was performed on milk samples of animals showing positive or doubtful reactions in RBPT or STAT. ABR Antigen and milk samples were brought to the room temperature prior to performing the test. About 30-50 μl of antigen was added to the 2 ml of milk in a narrow test tube and mixed thoroughly. The tubes were incubated at 37°C for 1 h together with positive and negative working standards. A strongly positive reaction was indicated by formation of dark pink ring above a white milk column. The test was considered to be negative if the pink colour of milk column underlying the ring exceeds that of the cream layer/ring.

Isolation and identification of Brucella abortus from bovine milk

For isolation and identification of *Brucella abortus* from cow milk, the standard procedures (Alton *et al.*, 1988; Quinn *et al.*, 1994; OIE, 2004) were followed. Milk samples were centrifuged at 6000-7000 rpm for 15 min and about 100 μl of milk pellet and creamy layer were inoculated separately on *Brucella* agar medium (BAM) plates (Himedia). The plates were incubated at 37°C for minimum 15 days under 10 per cent CO₂ tension. The
plates were observed at every 24 h for bacterial growth. The suspected colonies of Brucella were picked up and transferred to another BAM plates and incubated under 10 per cent CO₂ tension to obtain pure culture. The isolates so obtained were streaked on plates of MacConkey agar. The isolates Non-lactose fermenting colonies on MA were suspected Brucella isolates. The isolates suspected for Brucella were subjected to Gram staining for checking the purity of cultures and morphological characters.

The isolates suspected to be of Brucella were subjected to agglutination and biochemical tests such as motility, acriflavine test, indole, oxidase, catalase, urease, nitrate reduction and H₂S production. Rapid slide agglutination test was performed using one drop (0.03 ml) of Brucella abortus positive serum, procured from Division of Biological Products, IVRI, Izatnagar, was taken on a glass slide by micropipette. The loopful culture from single suspected colony was mixed thoroughly with the spreader and the slide was rotated for four min. Definite clumping/agglutination was considered as positive reaction indicating Brucella isolate, where as no clumping/agglutination was considered as negative.

Seroprevalence study

Seroprevalence study was conducted on the basis of organized and unorganized farms, age-wise and region-wise. For age-wise prevalence, animals were classified into different age groups such as 1.5 to 3, 3 to 4.5 and 4.5 to 6 years. Different parts (Satwari, Akhnoor, Bhalwal and Dansal) of Jammu region were included in the present study.

Results and Discussion

In the present study, to determine the magnitude of occurrence of brucellosis in cattle, the serological test viz. RBPT and STAT were carried out. MRT to detect anti-Brucella antibodies in the milk, and Brucella organism was isolated from milk of animals showing serological positive or doubtful reactions was also done.

Seroprevalence of brucellosis

In the present study the seroprevalence in cattle of Jammu was assessed by RBPT and STAT. Out of the 160 serum samples tested, 3 (1.88%) samples were RBPT positive and 5 (3.13%) samples were STAT positive. The results of the present study showed that 3 (1.88%) samples were positive by both RBPT and STAT. For overall prevalence of brucellosis in cattle only true positive (positive for both RBPT and STAT) were considered and recorded overall seroprevalence as 1.88 per cent.

Seroprevalence on the basis of organized and unorganized farms, our study recorded zero seroprevalence of brucellosis by both RBPT and STAT in organized dairy farm while in unorganized sector, 2.16 and 3.65 per cent seroprevalence by RBPT and STAT, respectively, was recorded.

Age-wise seroprevalence study found that cows in age group of 4.5 to 6 years had highest (4.17% and 6.25%, respectively) seroprevalence of Brucellosis by RBPT and STAT (Table 1).

Table 1. Age-wise prevalence in large ruminants as detected by RBPT and STAT.

<table>
<thead>
<tr>
<th>Species</th>
<th>Age (Years)</th>
<th>No of samples collected</th>
<th>Samples Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>1.5 to 3</td>
<td>44</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>3 to 4.5</td>
<td>68</td>
<td>1 (1.47)</td>
</tr>
<tr>
<td></td>
<td>4.5 to 6.0</td>
<td>48</td>
<td>2 (4.17)</td>
</tr>
</tbody>
</table>

In our study area wise seroprevalence of brucellosis in cattle revealed more seroprevalence in Satwari block (3.75%) whereas no sample was positive from rest of 3 blocks by RBPT, while STAT showed 5% occurrence in Satwari block and followed by Akhnoor. The detail results are presented in Table 2.

Table 2. Area-wise prevalence in large ruminants as detected by RBPT and STAT.

<table>
<thead>
<tr>
<th>Area</th>
<th>Samples collected</th>
<th>Samples positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satwari</td>
<td>80</td>
<td>3 (3.75)</td>
</tr>
<tr>
<td>Akhnoor</td>
<td>30</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Bhalwal</td>
<td>25</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Dansal</td>
<td>25</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Milk ring test on bovine milk samples

Total ten milk samples were collected from cows which were positive or doubtful in serological studies were analyzed for detection of anti-Brucella antibodies using MRT. Out of 10 milk samples of cattle, 2 (20%) were positive.

Isolation and characterization of Brucella spp. from cow’s milk

Total ten milk samples subjected to MRT were also processed for isolation of Brucella abortus, for which Brucella agar medium (BAM) was used as a primary culture medium. From the milk samples, milk and creamy layer separately, were inoculated on BAM under 10 per cent CO₂ tension conditions for 15 days. The round, glistening and smooth colonies (Fig. 1) on of BAM were further streaked on MacConkey agar (MA). The non-lactose fermenting isolates on MA plates were presumed to be that of Brucella. Of the 20 milk samples processed, only one (10%) presumptive isolate of Brucella was obtained.

![Fig. 1. Brucella colonies on Brucella agar medium plate. Brucella colonies are smooth, round and glistening.](image)

The isolates presumptive to be of Brucella were subjected to Gram staining and were found to be Gram negative, coccobacillary rods (Fig. 2A). All the isolates were found positive by Rapid Slide Agglutination Test (Fig. 2B). The isolates were further identified by biochemical tests and it was observed that the isolates were positive for Oxidase (Fig. 2D), catalase (Fig. 2D) and urease whereas negative for indole test. Further, the isolates produced H₂S in the MSM and reduced nitrate to nitrite. Acriflavine test revealed that both the isolates were smooth forms of the organism. On the basis of morphological, biochemical tests and Rapid Slide Agglutination Test, the isolates were confirmed to be that of Brucella abortus.

![Fig. 2. Characterization of isolated Brucella from suspected cows milk samples. [A] Colonies subjected for Grams stain and smear showed Gram negative coccobacillary rods; [B] Rapid slide agglutination test showed strong clumping or agglutination reaction positive for Brucella; [C] Oxidase test is clearly showing the positive reaction in the left as blue color spot and white as negative reaction; [D] Showing positive catalase test with production of bubbles on addition of H₂O₂.](image)
whereas all 14 samples were positive in STAT. They found that the overall seroprevalence was 1.95 per cent and greater in adult cattle. The higher seroprevalence in the present study shown by STAT might be due to the possibility of cross-reactions of Brucella antibodies with those against other gram-negative bacteria, such as Vibrio cholerae, Yersinia enterocolitica serotype 09, Francisella tularensis and Vibrio cholera. Although STAT is the most commonly used test which detects antibodies and is considered as the quantitative test for brucellosis. But it shows high false positive, results due to cross reactions, and is not a prescribed or alternate test by OIE (OIE, 2004). RBPT is a simple spot agglutination test, using antigen stained with Rose Bengal and buffered to low pH, usually 3.65. RBPT is very sensitive, but like all other serological tests, it can give false positive result because of S19 vaccination or either cross – reactions. However cross-reactions are lower as compared to STAT amid acidic pH.

For the epidemiological studies samples were collected age wise and area wise. Serum samples from cattle were taken from three different age groups 1.5 to 3 years, 3 to 4.5 years and 5 to 6.5 years. The higher prevalence of the brucellosis in aged animals has been reported by various workers (Chakarborty et al., 2000; Kubuafor, 2000). A recent study has been reported the significant association between age group and the prevalence of brucellosis in cattle (Rahman et al., 2011). Nevertheless, the susceptibility to brucellosis appears to be more commonly associated with sexual maturity than age which is known to be due to presence of sugar named ‘erthyritol’ in genital organs of adults (Radostits et al., 2000).

Further the epidemiological study on the basis of organized and unorganized farms, recorded zero seroprevalence of brucellosis by, both, RBPT and STAT in organized sector while in unorganized sector, the values were 3.65 and 2.19 per cent by STAT and RBPT. Similar lower prevalence in organized dairy farms was recorded by Nasir et al., (2004), who performed seroprevalence of brucellosis using RBPT and STAT in 1473 cattle. The zero seroprevalence in organized dairy farm in present study might be due to regular screening of the herd on regular basis, hygienic sheds, proper disposal of animals waste and semen used in artificial insemination from brucellosis screened bulls, as the organized farm was the government owned.

From the seropositive animals and few doubtful reactors milk was collected. These milk samples were used for detecting antibodies in milk by using MRT and for isolation of the Brucella abortus. In the present study, a total 10 milk samples were tested by MRT and recorded 2 (20%) positive samples. The results were found almost similar as in case of work done by Mahato et al., (2004) to detect Brucella antibody in individual milk samples of 67 cows by using MRT and found 24 (35.82%)samples as positive. Thus in their study, slight higher positivity could be due to false-positive reactions which may occur in cattle vaccinated less than 4 months prior to testing, recent parturition, end of lactation and due to sub-clinical mastitis (Alton et al., 1988) or in samples containing abnormal milk (such as colostrum). Therefore due to some of these reasons, it is not recommended to use this test in very small farms where these problems may have a greater impact on the test results.

The milk samples were further used for the isolation of the Brucella abortus, which was done as per the standard procedure (OIE, 2004). In the present study out of 20 milk samples only 1 (10%) samples yielded recovery of Brucella in milk. It has been reported that animals showing antibodies both in serum as well as in milk may not reveal the presence of Brucella in milk by cultural isolation. This might be due to the chronic disease or intermittent shedding of Brucella in milk (Corbel, 1988). Similar results were shown by Chatterjee et al., (1995), who revealed 6.2 per cent of isolation rate from milk, vaginal swab, hygroma fluid and semen samples of 177 cows and bulls having Brucella agglutinins at positive diagnostic level (80 IU/ml).

Whereas, Kaur et al., (2006) isolated Brucella from vaginal mucus, foetal membranes and foetal stomach content of aborted cattle and buffaloes which were RBPT and STAT positive. They were also able to isolate B. abortus from RBPT and STAT negative animals and concluded that the isolation method was most sensitive in comparison to RBPT and STAT.
Seroprevalence Studies of ... Farms in North India

References

