Detection of Virulence Genes in *Salmonella* Species Isolated from Chevon and Chicken Meat

Vivek Kumar Naik1, Sanjay Shakya1*, Anil Patyal1 and Nitin E. Gade2

1Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, CGKV, Anjora, District: Durg Chattisgarh, INDIA

2Veterinary Physiology and Biochemistry Department, College of Veterinary Science and Animal Husbandry, CGKV, Anjora, District: Durg Chattisgarh, INDIA

*Corresponding author: S Shakya; Email: shakyadurg@gmail.com

Received: 30 January, 2015 Accepted: 24 February, 2015

ABSTRACT

The aim of present study was to investigate the detection of virulence factors encoded *Salmonella* enterotoxin (*stn*) and plasmid encoded fimbriae (*pef*) genes in isolates of Salmonellae isolated from chevon and chicken meat samples collected from different districts of Chhattisgarh. A total of 32 *Salmonella* isolates were recovered, among them 18 and 14 isolates were recovered from chevon and chicken meat samples, respectively. All the *Salmonella* isolates were tested for the presence of virulence associated genes viz., *stn* and *pef* by using polymerase chain reaction (PCR) protocols, standardized separately for each gene. All 32 (100%) *Salmonella* isolates were found to carry the enterotoxin determinant *stn* gene whereas none of the *Salmonella* isolate was found positive for *pef* gene, indicating that the *stn* gene is widely distributed among the *Salmonella* isolates irrespective of source of sample, species, serovars and location. The *stn* gene in *Salmonella* was found to be highly conserved. Thus, *stn* gene may be used as a target gene for detection of Salmonellae in different types of field samples.

Keywords: Salmonellosis, *stn*, *pef*, meat, virulence

In India, *Salmonella* has become leading cause of food borne illnesses viz., food poisoning, acute gastroenteritis, dysentry and other diseases even to death with considerable economic impact. Eggs, chicken, meat and meat products are the most common vehicles of salmonellosis to humans (Maharjan et al., 2006). There are more than 2500 serotypes of *Salmonella* and new serotypes are emerging every year, most of them have strong pathogenicity to humans and animals (Fang et al., 2010). The outcome of a *Salmonella* infection is determined by the status of the host and of the bacterium. Age, genetic and environmental factors mainly determine the status of the host whereas virulence factors determines the status of the bacterium (Van Asten and Van Dijk, 2005). Virulence factors responsible for pathogenicity in enteric bacteria are often plasmid encoded, as in *E. coli*, *Yersinia* spp. and *Shigella* spp. However, current evidences suggest that the contribution of virulence plasmids to pathogenesis in *salmonella* is less important (Muthu et al., 2014) and dictated by an array of factors that act in tandem and ultimately manifest in the typical symptoms of salmonellosis. Virulence genes encode products that assist the organisms in expressing its virulence in the host cells. Some genes viz., *sef*, *pef*, *spv* or *inv* are known to be involved in adhesion and invasion of *Salmonella* into the host cell; whereas other *mgtC* genes are associated with the survival in the host system and *sop, stn, pip* A, B, D genes are involved in the actual manifestation of pathogenic processes. Other virulence factors of *Salmonella* include production of endotoxins and exotoxins, and presence of fimbrie and flagella (Van Asten and Van Dijk, 2005).

Therefore, present study was planned to determine the virulence factors encoded by *Salmonella* enterotoxin (*stn*)
and plasmid encoded fimbriae (pef) genes of *Salmonella* in isolates recovered from chevon and chicken meat samples collected from different districts of Chhattisgarh.

MATERIALS AND METHODS

Bacterial isolation

During the study period from September 2013 to August 2014, a total of 32 *Salmonella* isolates were recovered from chevon and chicken meat samples collected from different districts of Chhattisgarh. Among the 32 *salmonella* isolates, 18 and 14 isolates were recovered from chevon and chicken meat samples, respectively. All the isolates were available and maintained with the Department of Veterinary Public health and Epidemiology, College of Veterinary Science and A.H., Anjora, Durg (C.G.).

Polymerase Chain Reaction (PCR) for stn and pef genes

All the *Salmonella* isolates were tested for the presence of virulence associated *stn* and *pef* genes using PCR protocols standardized separately for each gene. Template DNA of *Salmonella* isolates incorporated in PCR reactions was prepared by boiling and snap chill method (Nagappa *et al.* 2007). Briefly, all *Salmonella* isolates were grown in 10 ml Luria Bertani (LB) broth (HiMedia, India) and incubated at 37°C for 24 hrs. Thereafter, one ml of the test culture were taken in a 1.5 ml microcentrifuge tube and centrifuged at 8000 rpm for 10 min. The pellet was washed twice with sterile saline solution and finally re-suspended in 300 μl sterilized DNAse and RNAse-free milliQ water (Millipore, USA). All the *Salmonella* isolates were vortexed and boiled for 10 min and then were immediately kept on ice. Suspensions were centrifuged at 12000 rpm for 10 min and 3µl of the supernatant was used as a DNA template in PCR mixtures. The PCR analysis for *stn* and *pef* genes was carried out as per the protocol described by Murugkar *et al.* (2003) with suitable modifications. The primers sets of *stn* and *pef* genes used in this study were synthesized from Imperial Life Sciences (P) Limited, Gurgaon, Haryana, India. The primer sequence of target virulence genes used in this study are presented in Table 1 and PCR cycling conditions are mentioned in Table 2.

The PCR was performed using thermocycler (Mastercycler, Eppendorf, Germany) in a final reaction volume of 25 µl containing 2.5 µl of 10X Taq Buffer, 1.5 mM MgCl₂, 50 µM of each deoxyribonucleotide triphosphate (dNTP), 10

* Forward Primer, ** Reverse Primer

Table 1. Primer sequences for polymerase chain reaction

<table>
<thead>
<tr>
<th>Target Virulence Gene</th>
<th>Primer Sequence (5'-3')</th>
<th>Amplicon Size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stn</td>
<td>(F*): TTGTGTCGCTATCAGCAACC (R**): ATTCGTAACCCGCTCTCGTCC</td>
<td>617</td>
<td>Murugkar et al. (2003)</td>
</tr>
<tr>
<td>PeF</td>
<td>(F*): TGTTTCCGGGCTTGTGCT (R**): CAGGGCATTGCTGATTCC</td>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

* Forward Primer, ** Reverse Primer

Table 2. Polymerase chain reaction conditions

<table>
<thead>
<tr>
<th>Primers</th>
<th>Initial Denaturation</th>
<th>Cycling Conditions</th>
<th>Final Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stn (F*)</td>
<td>94°C for 5 min</td>
<td>94°C for 1 min, 59°C for 1 min, 72°C for 1 min</td>
<td>72°C for 10 min</td>
</tr>
<tr>
<td>Stn (R**)</td>
<td>94°C for 5 min</td>
<td>59°C for 1 min, 72°C for 1 min, 72°C for 10 min</td>
<td></td>
</tr>
<tr>
<td>PeF (F*)</td>
<td>94°C for 5 min</td>
<td>72°C for 10 min</td>
<td></td>
</tr>
<tr>
<td>PeF (R**)</td>
<td>94°C for 5 min</td>
<td>72°C for 10 min</td>
<td></td>
</tr>
</tbody>
</table>

* Forward Primer, ** Reverse Primer
Table 3. Distribution of virulence genes among *Salmonella* isolated from chevon and chicken meat samples.

<table>
<thead>
<tr>
<th>Source/Sample type</th>
<th>Number of isolates tested</th>
<th>No. of isolates positive (%) for virulence genes</th>
<th>stn</th>
<th>Pef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevon</td>
<td>18</td>
<td>18 (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken Meat</td>
<td>14</td>
<td>14 (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>32 (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pmol of each primers, 1U Taq Polymerase, 3 μl of template DNA and nuclease free water to make up the total volume 25 μl. After completion of PCR reaction cycles, amplified products were analysed using submarine agarose gel electrophoresis by running along with DNA ladder. The final PCR product was electrophoresed on 1.5% (w/v) agarose gel prepared in 1X Tris- Borate EDTA (TBE) buffer, visualized by ethidium bromide (0.5μg/ml) stain under UV transilluminator (Biometra) and documented by Gel Documentation System (Gel Doc™ XR, Biorad, USA). All the biologicals required for molecular work were procured from Thermo Scientific (USA), Genetix (India) and Bangalore Genei (India).

RESULTS AND DISCUSSION

In the present study, all 32 (100%) *Salmonella* isolates were found to carry the enterotoxin determinant stn gene (Table 3). The amplified PCR products of all *salmonella* isolates on agarose gel electrophoresis yielded a 617 bp product in the stn gene segment (Figure 1).

Present study revealed that stn gene was present in all the isolates (100%) irrespective of source of sample and region of sampling. *Salmonella* induced diarrhoea is a complex phenomenon involving several pathogenic mechanisms including production of enterotoxin (Baloda et al., 1983) which is mediated by the stn gene (Chopra et al., 1987). The findings of present study are in agreement with Ezzat et al. (2014), wherein they reported the presence of stn gene in all *salmonella* isolates (100%) isolated from broiler chicken’s liver, caecum, heart blood, spleen & kidney samples. The stn gene was found in 41 faecal isolates of *Salmonella* including 34 isolates of *S. Typhimurium* and 7 isolates of *S. Enteritidis* of calves, piglets and poultry (Barman et al., 2013) and in 95 *Salmonella* strains belonging to *Salmonella enterica*, isolated from man and animals (Murugkar et al., 2003). Prager et al. (1995) reported that stn gene could be detected in all the strains of *Salmonella* Enterica but not in *Salmonella* Bongori. The gene stn is reported to be absent in *S. bongori* strains as well as in other members of *Enterobacteriaceae* or Vibrio families harbouring enterotoxigenic potential (Murugkar et al., 2003). Makino et al. (1999) also reported that the presence of even a single organism per gram of meat sample was detectable by PCR on the basis of detection of stn gene. Shi et al. (2013) reported the presence of stn gene in 45 out of 47 strains of *salmonella* had a chicken source origin and revealed that the enterotoxin stn gene carrying rate among *Salmonella* strains was 95.7%. Findings of present study revealed that the stn gene is widely distributed among the *Salmonella* isolates irrespective of source of sample, species, serovars and region of sampling. stn gene in *Salmonella* is highly conserved and it is expected to be a new target gene for detection of Salmonellae in field samples.

In the present study, none of the *Salmonella* isolates were found to be positive for pef gene. Results of our study are in agreement with Muthu et al. (2014) who also couldn’t find pef gene among any of the *Salmonella* isolates recovered from human clinical samples. In contrary, Murugkar et al. (2003) reported the presence of pef gene in 85 of the 95 *Salmonella* isolates and revealed that there was no serotype specific presence or absence of this gene. The pef gene expresses plasmid-encoded fimbriae that contribute in adhesion and invasion of host cells.

ACKNOWLEDGEMENTS

The authors are highly thankful to the Dean, College of Veterinary Science and Animal Husbandry, Chhattisgarh
Kamdhenu Vishwa Vidyalaya, Anjora, Durg (CG), for providing necessary facilities to carry out this research work.

REFERENCES

