Expression Profile of CXCL3 Gene in Peripheral Blood Mononuclear Cells Challenged in vitro with Theileria annulata in Crossbred Cattle

Amod Kumar1, Manjit Panigrahi1, Bharat Bhushan1, Sourabh Sulabh1, Muhasin Asaf V.N.1, Jay Prakash Gupta1, B. C. Saravanan2, Shrikant Ghosh2 and Gyanendra. K. Gaur3*

1Division of Animal Genetics, IVRI, Izatnagar, Bareilly, INDIA
2Division of Parasitology, IVRI, Izatnagar, Bareilly, INDIA.
3LPM section, IVRI, Izatnagar, Bareilly, INDIA.
*Corresponding author: GK Gaur; Email: gyanendrakg@gmail.com

Received: 08 January, 2015 Accepted: 20 April, 2015

ABSTRACT

Bovine tropical theileriosis is a debilitating disease caused by the protozoan parasite Theileria annulata, transmitted by Hyalomma anatolicum anatolicum and has a wide geographical distribution from the Mediterranean basin to China. This disease is associated with high levels of morbidity and mortality, principally in exotic and crossbred cattle as compared to indigenous cattle. The disease identified as a major constraint on the improvement of cattle farming in several developing countries (Minjauw and McLeod, 2003). As per the last estimate, the cost of tropical theileriosis in India is approximately US$ 384.3 million (Minjauw and McLeod, 2003). The ideal approach to control tropical theileriosis, as with other tick-borne diseases, includes a portfolio of integrated strategies that are economically and environmentally sustainable. An attractive control strategy is to exploit pre-existing genetic resistance (Glass and Jensen, 2007). A study comprised of expression profile of many immune related genes by in vitro challenge of peripheral blood mononuclear cells (PBMCs) with T. annulata showed significant differential regulation of genes in crossbreds as compared to indigenous cattle (Dewangan et al., 2015). With the burgeoning information in genetics and genomics, new opportunities to identify factors controlling disease resistance can now be explored (Soller and Andersson, 1998). Chemokines are chemotactic cytokines controlling the migratory patterns and positioning of immune cells. Chemokine (C-X-C motif) ligand 3 (CXCL3) is a small cytokine belonging to the CXC chemokine family, controls migration and adhesion of monocytes and mediates its effects on target cells by interacting with a cell surface chemokine receptor called CXCR2 (Smith et al., 2005; Ahuja and Murphy, 1996). The T. annulata parasite infects mainly cells of the myeloid lineage which are also the main producers of inflammatory cytokines. Genes encoding these inflammatory cytokines in macrophages are up-regulated in response to Theileria infection (Brown et al., 1995). The present study was conducted with the...
objective to see the changes, if any, in mRNA expression of CXCL3 in PBMCs challenged with *T. annulata* sporozoite in early hours.

Four crossbred calves of around three months of age having good general health maintained at Cattle and Buffalo Farm, Indian Veterinary Research Institute Izatnagar were used in present study. Calves were screened for tropical theileriosis by blood smears examination before proceeding for further experiment.

Peripheral blood was collected aseptically and immediately stored on ice. Peripheral blood mononuclear cells (PBMC) were separated under cold conditions by density gradient centrifugation (Histopaque-1.083 g ml$^{-1}$, Sigma, Poole, Dorset, UK). The cells were resuspended at 2x106 cells/ml in RPMI-1640 medium supplemented with 20% FBS and aliquot into a 6-well plate. The *T. annulata* sporozoites, (Parbhani isolate) maintained in the Protozoology Laboratory, Division of Parasitology, of the institute was used to infect the cells *in vitro*. Sporozoite suspension was mixed at the rate of 0.5 tick equivalents in 2x106cells/ml. The PBMCs were incubated at 37°C in a 5% CO$_2$ incubator for 2 h.

RNA isolation was done using RNeasy Plus Mini Kit (Qiagen) as per the manufacturer’s instructions. RNA was quantified by NanoDrop ND 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Primers were designed (Table 1) and Real time PCR reactions were performed using Fast SYBR® Green Master mix (Applied Biosystems, Warrington, UK). The qPCR thermal cycling program consisted of one cycle at 95°C for 10 min, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. A dissociation step was included to confirm amplification specificity. Four biologicals (crossbred calves) and three technical replicates were used in the present study. Data generated were analysed by comparative Ct method (Schmittgen and Livak, 2008).

Table 1. List of Primers used in present study.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Primer sequence</th>
<th>Primer length</th>
<th>Amplicon size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCL3</td>
<td>RT- CXCL3 F</td>
<td>GCTTGTCTCAACCTGAAGC</td>
<td>20 bp</td>
<td>139 bp</td>
</tr>
<tr>
<td></td>
<td>RT- CXCL3 R</td>
<td>TCCTCTATGAGCAGGACCCACT</td>
<td>22 bp</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>RT-GAPDH F</td>
<td>GGCGTGAAACCACGAGAAGTATAA</td>
<td>23 bp</td>
<td>194 bp</td>
</tr>
<tr>
<td></td>
<td>RT-GAPDH R</td>
<td>CCCTCCACGATGCCAAGT</td>
<td>19 bp</td>
<td></td>
</tr>
</tbody>
</table>

RNA isolation was done using RNeasy Plus Mini Kit (Qiagen) as per the manufacturer’s instructions. RNA was quantified by NanoDrop ND 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Primers were designed (Table 1) and Real time PCR reactions were performed using Fast SYBR® Green Master mix (Applied Biosystems, Warrington, UK). The qPCR thermal cycling program consisted of one cycle at 95°C for 10 min, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. A dissociation step was included to confirm amplification specificity. Four biologicals (crossbred calves) and three technical replicates were used in the present study. Data generated were analysed by comparative Ct method (Schmittgen and Livak, 2008).

![Normalized Ct value and melt curve of CXCL3 gene](image1.png)

Figure 1. Normalized Ct value and melt curve of CXCL3 gene.
Significant difference was observed in CXCL3 gene expression in crossbred animals. A 2.53 fold change (p< 0.05) was found in *T. annulata* infected PBMCs as compared to control PBMCs (Fig. 1a). Melt curve showed the desired amplification specificity (Fig. 1b).

CXCL3 has chemotactic activity for neutrophils and may play a role in inflammation and exert its effect on endothelial cells in an autocrine fashion. In a recent study, upregulation of CXCL3 gene was observed by microarray experiment in crossbred during early hour of infection (Amod et al., unpublished data). Similarly, Jensen et al. (2008) found the upregulation (fold difference 7.7, p<0.05) of CXCL3 gene in Sahiwal as compared to Holstein Friesian in resting monocytes at zero hour study while it showed downregulation at 2h (fold difference -1.5) and 72h (fold difference -1.2). Another chemokine Chemokine (C–X–C motif) ligand 2 also exhibited the same pattern of regulation at zero hour (fold difference 9.4), 2h (fold difference -1.5) and 72h (fold difference -1.1) in resting monocytes (Jensen et al., 2008). In a study related to macrophage activation by LPS & IFN-γ for the development of bovine macrophage specific cDNA microarray, CXCL3 showed 18.16 fold difference at 2h incubation and 15.28 fold difference at 16h of incubation (Jensen et al., 2006). The varying susceptibility to tropical theileriosis, exhibited by different cattle breeds may be due to breed-specific differences in interaction of infected cells with other immune cells. These studies reveal that CXCL3 gene may have a role in breed specific resistance to *T. annulata* infection in early hours of infection.

CXCL3 gene was differentially regulated during *T. annulata* infection in early stage of infection (p<0.05, fold change 2.53). However, there is a need to expand the investigation of host-pathogen interactions during *T. annulata* infection at different time intervals for CXCL3. Gene interaction network and its validation at protein level may further help in finding out the different gene functions during tropical theileriosis.

The authors acknowledge the necessary facilities received from the Director, Indian Veterinary Research Institute, Indian Council of Agricultural Research and Department of Science and Technology, Government of India to carry out this work.

REFERENCES

