Seroprevalence of Bluetongue among Sheep Population of Odisha

Abhishek Hota1*, Niranjana Sahoo1, Sangram Biswal1 and Manoranjan Rout2

1Department of Veterinary Epidemiology & Preventive Medicine, College of Veterinary Science and Animal Husbandry, O.U.A.T., Bhubaneswar, Odisha, INDIA
2ICAR-Directorate of Foot and Mouth Disease, Mukteswar, Nainital, Uttarakhand, INDIA

*Corresponding author: A Hota; Email: dr.abhishek.ovc@gmail.com

Received: 11 Feb., 2017 Revised: 28 April, 2017 Accepted: 30 April, 2017

ABSTRACT

Serum analysis was performed during October 2015 to April 2016 to ascertain the prevalence of bluetongue (BT) virus infection among sheep population in Odisha. Samples were collected randomly from apparently healthy sheep from 10 different agro-climatic zones of Odisha. Serum samples were screened for BT virus (BTV) antibodies using indirect enzyme linked immunosorbent assay (i-ELISA) at Division of Virology, IVRI, Mukteswar. Out of 217 samples screened, 60.36% samples were found positive for BTV infection. The prevalence of BTV antibodies in different agro-climatic zones ranged from 38.09% to 100%. This seroprevalence picture of BT, first of its kind, unfolds this viral infection among sheep population in Odisha.

Keywords: Seroprevalence, bluetongue, i-ELISA, sheep, Odisha

Bluetongue (BT), an important viral disease categorized by OIE in list A arthropod-borne haemorrhagic viral disease, is comparatively difficult to differentiate at the field level from other endemic viral diseases due to overlapping clinical signs. The disease usually affects both domestic and wild ruminants of semi-tropical and temperate regions. But it is mostly considered as a disease of sheep causing remarkable economic losses in the form of morbidity and mortality. The endemicity of BT has been reported in 11 states of India (Prasad, 2000). The present seroprevalence study was undertaken to unveil the real status of BT among sheep population in all agro-climatic zones of Odisha, India.

Serum samples from 217 sheep were collected randomly between October-2015 and April-2016 covering all 10 agro-climatic zones of Odisha. Concerned nomadic shepherds and field veterinarians were simultaneously interrogated to collect information suggestive of BT in their flock or locality, if any. Samples were subjected to serological assay for detection of antibodies against BT virus (BTV) using indirect ELISA based on VP7 protein using the test protocol as per De et al. (2008). Reading was taken at 492 nm and the average optical density (OD) values of negative control was calculated and compared with the test OD values. The OD values of tests that were higher than the average OD values of the negative control were considered as positive for BTV antibodies. The results were subjected to Chi-square test using SPSS software (Indian version) to determine the difference in susceptibility with p≤0.05.

Among 217 serum samples analyzed, 60.36% samples were positive for presence of BTV antibodies with 54.25% (51/94) in males and 65.04% (80/123) in females. The seroprevalence of BT in sheep with respect to sex was non-significant (p> 0.05). Of the total serum samples processed, the highest prevalence of 100% was found in South Eastern Ghat and the lowest of 38.09% in Western Central Table L and (Table-1). Earlier observation among sheep in coastal and central regions of Odisha between October 2011 and March 2012 indicated an overall prevalence of 52.43% (Pany et al., 2016). Odisha having diverse agro-climatic zones falls on tropics (17°49'-22°36'N latitudes and 81°36' - 87°18' E longitudes) and are likely to be endemic to BTV. As there is statistically
significant (P< 0.05) difference in seroprevalence, it could be corroborated to the variable herd immunity and other predisposing environmental factors affecting the label of virulence of BTV.

Seropositivity among non-descript adult sheep of Delhi was reported to be 13.21% (Audarya et al., 2015). Arun et al. (2014) demonstrated an overall prevalence of 7.5% among sheep of Kozhikode district and 16% among sheep of Palakkad district of Northern Kerala. Seropositivity of 58.82% among sheep and 31.79% among goats was reported by Joardar et al. (2013) in Assam. Bitew et al. (2013) detected antibodies against BTV in 28.6% sheep and goats of Uttar Pradesh.

So far 26 distinct serotypes of BTV have been recognised with no cross protectivity, against which, 21 serotypes are prevalent in India (Maan et al., 2011). Virus concentrations in secretions and excretions of infected animals are minimal, making direct, indirect, or aerosol transmission unlikely. Culicoides biting midges are the only significant natural transmitters of the virus. Movement of the vectors play an important role in transmission of the disease. Of the 1400 species prevalent world-wide, 39 species of Culicoides have been reported in India (Sreenivasulu et al., 2004). The ambient temperature, air humidity and total seasonal rainfall influence the ability of biting midges to carry and transmit BTV. A minimum temperature of 15°C favours replication BTV in Culicoides (Mellor et al., 2000) and the intensity of replication rises with increasing temperature (Van Dijk and Huismans, 1982). Meteorological data indicate that Odisha has diverse climatic zones with low to high rainfall which in turn facilitate breeding and availability of Culicoides. All the above factors attributed towards variation of the seropositivity of BT in different agro-climatic zones of the state.

It is quite impossible to eliminate Culicoides midges completely in the natural environment. Control of vectors by insecticides or protection from vectors may lower the number of insect bites and thereby the risk of exposure to BTV infection. Prophylactic immunization remains the most effective and practical control measure against BT in endemic regions. However, no commercial vaccine is available in India now. Use of vaccines with different serotypes does not provide consistent cross-protection. Further, use of live-attenuated vaccines involves some amount of risk as the insects may transmit the vaccine virus(es) from vaccinated to non-vaccinated animals and result in re-assortment of genetic material and give rise to new viral strains. Systematic and extensive epidemiological studies coupled with immunization of susceptible stock using the vaccine produced by local strains could be focused for the control of the disease at regional level.

SUMMARY

Table 1: Seroprevalence of Bluetongue in different agro-climatic zones of Odisha

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Agro-climatic zones</th>
<th>Number of Serum samples tested</th>
<th>Number of serum samples positive for BTV antibodies (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>North Western Plateau</td>
<td>16</td>
<td>43.75</td>
</tr>
<tr>
<td>II</td>
<td>North Central Plateau</td>
<td>15</td>
<td>93.33</td>
</tr>
<tr>
<td>III</td>
<td>North Eastern Coastal Plain</td>
<td>29</td>
<td>48.71</td>
</tr>
<tr>
<td>IV</td>
<td>East & South Eastern Coastal Plain</td>
<td>54</td>
<td>53.70</td>
</tr>
<tr>
<td>V</td>
<td>North Eastern Ghat</td>
<td>11</td>
<td>54.54</td>
</tr>
<tr>
<td>VI</td>
<td>Eastern Ghat High Land</td>
<td>19</td>
<td>73.68</td>
</tr>
<tr>
<td>VII</td>
<td>South Eastern Ghat</td>
<td>19</td>
<td>100.0</td>
</tr>
<tr>
<td>VIII</td>
<td>Western Undulating Zone</td>
<td>17</td>
<td>82.35</td>
</tr>
<tr>
<td>IX</td>
<td>Western Central Table Land</td>
<td>21</td>
<td>38.09</td>
</tr>
<tr>
<td>X</td>
<td>Mid Central Table Land</td>
<td>16</td>
<td>68.75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>217</td>
<td>60.36</td>
</tr>
</tbody>
</table>

A total of 217 serum samples from apparently healthy sheep of all the 10 different agro-climatic zones of Odisha were screened for bluetongue virus (BTV) antibodies by indirect ELISA at Division of Virology, IVRI, Mukteswar.
Bluetongue in Sheep population of Odisha

during October 2015 to April 2016. Prevalence of BTV antibodies in different agro-climatic zones ranged from 38.09% to 100% with an overall rate of 60.36%.

ACKNOWLEDGEMENTS

We acknowledge all the scientists and research associates working at Bluetongue laboratory, Division of Virology, IVRI, Mukteswar for extending their support and kind help for processing the samples. We also thank the Chief District Veterinary Officers, Veterinary Assistant Surgeons and farmers of various districts for their support during sample collection.

REFERENCES

