Prognostic tests for uterine torsion affected buffaloes

Kamlesh Jeengar¹*, Govind Narayan Purohit², Jitendra Singh Mehta², Vikas Choudhary³, Ashutosh Tripathi⁴

¹Veterinary Officer, T.M.V.U., Suwana, District Bhilwara, Rajasthan, India.
², ⁴Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Bikaner-334001, Rajasthan, India.
³Agriculture Finance Officer, Central Bank of India, Allot, Indore, India.

*Corresponding author - kamlesh.jinx@gmail.com

Abstract

Twenty-five female buffaloes suffering from uterine torsion were presented to the clinic of Veterinary Gynaecology and Obstetrics, CVAS, Bikaner for treatment. Three times blood samples were obtained from 25 buffaloes with uterine torsion (at the time of presentation of the animal, 1 h and 24 h after fetal delivery) and 5 healthy buffaloes to investigate the relationship between concentrations of SGOT (serum glutamic oxaloacetic transaminase), SGPT (serum glutamic-pyruvic transaminase), Bilirubin, serum creatinine and blood urea nitrogen (BUN). The aim of this study was to investigate related alterations in these blood constituents. There were significant (P < 0.01) increases in SGOT, SGPT, Bilirubin, serum creatinine and blood urea nitrogen (BUN). It may be inferred that torsion may lead to imbalance in biochemical profiles that affect the proper functioning of the uterine musculature. Buffaloes subjected to uterine torsion are associated with hepatic and renal dysfunction. In conclusion, concentration of above parameters can be used as a prognostic indicator for the occurrence of uterine torsion in buffaloes.

Keywords: SGOT, SGPT, Bilirubin, Creatinine, BUN

Uterine torsion occurs in a pregnant uterine horn and is defined as the twisting of the uterus on its longitudinal axis (Purohit et al., 2011a). It is a major condition affecting buffaloes during late pregnancy (Foud and El-Sawaf, 1964; Verma et al.,
1974; Gupta et al., 1981) and it has been reported as a serious cause of dystocia in buffaloes (Murty et al., 1999; Nanda et al., 2003; Amin et al., 2011), threatening the lives of both fetus and dam. Torsion of the uterus reportedly constitutes about 53-83% of the dystocia in buffaloes presented at the referral hospitals (Vasishta, 1983; Malhotra, 1990; Singh, 1991; Prabhakar et al., 1994; Purohit and Mehta, 2006; Srinivas et al., 2007; Purohit et al., 2011a; Purohit et al 2011b; Purohit et al., 2012).

A diverse list of contributing causes has been proposed, including the anatomy, slipping, the manner in which the animal rises, and the strong movements of the fetus during the first stage of labor (Roberts, 1986; Kolla et al., 1999; Noakes et al., 2009). Factors such as duration of the condition and severity of the torsion have been suggested as determinants of the outcome (Frazer et al., 1996; Amer et al., 2008; Amin et al., 2011).

When physical examination fails to yield a diagnosis or prognosis in difficult cases, blood analysis may help to identify the problem. Biochemical parameters can exclude some diseases, and if there are abnormalities, they might aid in establishing a prognosis and developing a therapeutic plan (Amer et al., 2008; Hussein and Abd Ellah, 2008; Amin et al., 2011). The aim of this study was to investigate alterations in blood parameters.

Materials and Methods

Clinical examination

The present investigation was conducted on 25 buffaloes presented with uterine torsion at Clinics of Veterinary Gynaecology and Obstetrics, CVAS, Bikaner with a history of dystocia or due to a general medical problem like colic, straining or reduced food intake. Clinical examination included transvaginal followed by transrectal examination of buffaloes to determine the torsion.

Five normal parturient buffaloes presented at the Clinic of Veterinary Gynaecology and Obstetrics, CVAS, Bikaner, were included as control.

Blood analysis

Blood was collected in sterile test tubes from buffaloes with uterine torsion (n=25) at the time of presentation and 1 hr and 24 hr after fetal delivery. Serum was separated and stored at -20° C till further assay. Blood was also collected from normal parturient buffaloes (n=5) immediately after parturition and separated
Prognostic tests for uterine torsion affected buffaloes

serum was stored at -20° C till further assay. Serum activities of GOT, GPT, bilirubin, creatinine and BUN were analysed using Kinetic UV test employing commercially available test kits (Precision Biotech, India)

Statistical analysis

Data were collected, arranged, summarized and then statistically analyzed. Analysis included mean values, standard error and analysis of variance (ANOVA) using F-test. The data were analysed using conventional statistical procedures as described by Snedecor and Cocharan, (1989). Data are presented as Mean ± SE.

Result and Discussion

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Normal parturient buffaloes (Control) (n=5)</th>
<th>Torsion affected buffaloes (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At presentation</td>
<td>1 hr after fetal delivery</td>
</tr>
<tr>
<td>Liver function test</td>
<td>SGOT (U/L)</td>
<td>63.73 ± 0.54a</td>
</tr>
<tr>
<td></td>
<td>SGPT (U/L)</td>
<td>35.49 ± 0.69a</td>
</tr>
<tr>
<td></td>
<td>Bilirubin (mg/dl)</td>
<td>0.92 ± 0.08a</td>
</tr>
<tr>
<td>Renal function test</td>
<td>Creatinine (mg/dl)</td>
<td>0.94 ± 0.01a</td>
</tr>
<tr>
<td></td>
<td>BUN (mg/dl)</td>
<td>18.38 ± 0.74a</td>
</tr>
</tbody>
</table>

Mean values within the same row with different superscriptions are significantly different (P<0.01)

The evaluation of liver and renal function tests performed on blood collected from buffaloes with uterine torsion (n=25) and normal parturient buffaloes (n=5) are presented in the table. The liver and kidney function parameters were significantly higher than the normal buffaloes and they gradually decreased and were found to be normal after detorsion and fetal delivery.
Normal parturition in bovines has negligible influence on the plasma enzymes (Schonfelder et al., 2007; Hussein and Abd Ellah, 2008). SGOT, SGPT and Billirubin were recommended as part of a metabolic profile test to monitor the health status of the liver (Mullen, 1976; Bouda et al., 1980; Lotthammer, 1982; Pearson, 1990).

In the present study, SGOT levels were found elevated at the time of presentation of buffaloes with uterine torsion (87.86 ± 1.19 U/L) compared to normal parturient buffaloes (63.73 ± 0.54 U/L). Similar elevated level of SGOT was also seen in previous findings in uterine torsion cases (Pattabiraman and Pandit, 1980; Prabhakaran et al., 2006; Singh et al., 2006; Schonfelder et al., 2007; Hussein and Abd Ellah, 2008; Amin et al., 2011). Significant increases in SGOT activities may be attributed to muscle exhaustion produced by strong abdominal contractions due to uterine torsion (Hussein and Abd Ellah, 2008) and are often a reflection of cellular destruction or diseases (Oliveira et al., 1998; Hoeben et al., 2000). Great muscular effort or damage results in leakage of such enzymes due to necrosis or damage of uterine cells (Coles, 1986; Malik, 1986; Kraft and Dürr, 2005). SGOT level decreased 24 hr after fetal delivery (79.71 ± 1.35 U/L). Similar findings were seen in previous studies (Singla et al., 1992; Amer et al., 2008). It was indicated that uterine torsion affects the liver of the animal due to endotoxins resulting from muscle damage (Farrag et al., 1984).

In the present study, SGPT levels were found elevated at the time of presentation of uterine torsion affected buffaloes (45.33 ± 0.71U/L) compared to normal parturient buffaloes (35.49 ± 0.69 U/L). Similar elevated levels of SGPT were also seen in previous findings in uterine torsion cases (Bostedt, 1973; Singla et al., 1992). Uterine hypoxia and increased release of catecholamines from the adrenal medulla associated with uterine torsion and its stress could be responsible for the significantly higher levels of SGPT, noticed in torsion affected buffaloes as compared to normal parturient buffaloes. This is also encountered in other stressful conditions causing the release of catecholamines from adrenal medulla (Altland and Highman, 1961) and tissue hypoxia which have been demonstrated to be responsible for increased circulating level of SGPT by increasing the permeability of cell membrane (Highman et al., 1959; Highman and Altland, 1960). SGPT values decreased subsequently and found normal after 24 hr of fetal delivery (38.53 ± 1.06 U/L) which supports the previous findings (Prabhakaran et al., 2006; Singh et al., 2009). Results of the present study showed that there were elevated concentration of total serum billirubin in uterine torsion affected buffaloes (1.93 ± 0.14 mg/dl) compared to normal parturient buffaloes (0.92 ± 0.08 mg/dl). The possible causes may be attributed to stress on animals which
influenced the concentration of bilirubin in serum. Bilirubin level decreased subsequently in serum and found normal after 24 hr of fetal delivery (1.21 ± 0.12 mg/dl). Similar findings were seen in previous studies (Schonfelder et al., 2007; Hussein and Abd Ellah, 2008).

The results of the present study showed that there were increased concentrations of serum creatinine in buffaloes with uterine torsion (2.73 ± 0.26 mg/dl) compared to normal parturient buffaloes (0.94 ± 0.01 mg/dl). Serum creatinine subsequently decreased after fetal delivery and found to near normal level after 24 hr of fetal delivery (1.48 ± 0.06 mg/dl). The present result supports the previous findings (Amer et al., 2008; Singh et al., 2009; Swelum et al., 2012). The increased levels of serum creatinine could be related to stress conditions exerted on the affected buffaloes with concomitantly reduced blood flow to the kidneys and reproductive tract. At the same time, these results might be attributed to nephropathy resulting from toxic substances liberated from the dead fetus in some cases of uterine torsion (Arthur et al., 1989).

Increased concentrations of blood urea nitrogen (BUN) in uterine torsion affected buffaloes (28.02 ± 1.57 mg/dl) compared to normal parturient buffaloes (18.38 ± 0.74 mg/dl) were recorded during the present study which decreased 24 hr after fetal delivery (21.63 ± 1.32 mg/dl) similar findings have been previously recorded in cattle and buffaloes (Deosi and Dhaliwal, 2004; Schonfelder et al., 2007; Amer et al., 2008; Singh et al., 2009). The increased levels of BUN in uterine torsion affected buffaloes, could be related to dehydration status, stress condition exerted on the affected buffaloes with concomitantly reduced blood flow to kidneys, and nephropathy resulted from toxic substances liberated from dead fetuses (Payne, 1987). In addition, it has been recorded that an elevation of BUN and creatinine might be due to concomitant breakdown of tissues during gluconeogenesis under effect of increased cortisol level (Payne, 1987).

Conclusion

Uterine torsion can cause serious outcomes in buffaloes. It seems that buffalo subjected to uterine torsion are associated with hepatic and renal dysfunction. The level of SGOT, SGPT, Bilirubin, Serum Creatinine and BUN can be used as an indicator for occurrence and prognosis of mechanical treatment of uterine torsion in buffaloes.

References

Hussein H and Abd Ellah MR 2008. Effects of dystocia, fetotomy and caesarian sections on the liver enzymes activities and concentrations of some serum biochemical parameters

