A retrospective study on incidence of dystocia in cattle and buffaloes at referral center

Kamlesh Jeengar1\textasteriskcentered, G N Purohit2, J S Mehta2, Vikas Choudhary3 and Laxmi Kant Nirwan4

1Veterinary Officer, T.M.V.U., Suwana, District Bhilwara, Rajasthan, India.
2Prof. Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Bikaner-334001, Rajasthan, India.
3Agriculture Finance Officer, Central Bank of India, Allot, Indore, India.
4Veterinary Officer, Govt. Veterinary Hospital, Satyun District, Churu, Rajasthan, India.

*Corresponding author: kamlesh.jinx@gmail.com

Abstract

A retrospective study on the incidence of bovine dystocia between October, 2012 to September, 2013 was screened. A high incidence of maternal cause of dystocia was found in both cows (78.89%) and buffaloes (80.33%). Maldisposition of fetus was the commonest cause of fetal dystocia in both cows (16.67%) and buffaloes (18.03%). Imperfect dilatation of cervix (50%) was the major cause of maternal dystocia in cattle while uterine torsion (55.74%) in buffaloes. Other causes of dystocia with low incidence include narrow pelvis, fetal emphysema and fetal monster.

Keywords: Incidence, types of dystocia, cattle

Dystocia is defined as delayed or difficult calving, sometimes requiring significant human assistance (Lombard \textit{et al.}, 2007; Zaborski \textit{et al.}, 2009; Uzamy \textit{et al.}, 2010). In cattle and buffalo the incidence of dystocia is maximum compared to other farm animals (Purohit \textit{et al.}, 2011). Buffaloes are known to have greater incidence of maternal dystocia (Saxena \textit{et al.}, 1989; Nanda \textit{et al.}, 2003). However, a higher incidence of fetal dystocia has been also recorded for both cows (Singla
et al., 1990) and buffaloes (Singla et al., 1990; Phogat et al., 1992; Singla and Sharma, 1992). This report analyses the incidence of dystocia in 151 referral cases presented to this referral centre.

Materials and Methods

Retrospective study was done on cows (n=90) and buffaloes (n=61) presented to Clinics of veterinary gynaecology and obstetrics, CVAS, Bikaner during one year from October, 2012 to September, 2013. Medical records were reviewed and information were obtained on type of dystocia.

Results and Discussion

All the animals were presented to the referral centre 12 to 24 hours after the onset of second stage of labour. The incidence of different type of dystocia is presented in Table 1. Maternal causes were predominant in both cows (78.89%) and buffaloes (80.33%) and fetal causes were 21.11% in cows and 19.67% in buffaloes. Incidence of fetal monster due to conjoined twins with single head or monocephalus was 1.1% in cow. No single case of fetal monster was noted in buffaloes during this period at referral center. The incidence of fetal emphysema was 3.3% in cows and 1.64% in buffaloes. The commonest fetal cause was maldisposition of fetus in both cows (16.67%) and buffaloes (18.03%), whereas, the predominating maternal cause of dystocia were incomplete dilation of cervix in cows (50%) and uterine torsion in buffaloes (55.74%). Dystocia due to narrow pelvis accounted in 4.4% cows and in 1.64% buffaloes.

In present study a higher incidence of maternal dystocias were seen in both cows and buffaloes which were supported by the studies of Srininvas et al. (2007) and Purohit et al. (2011), contrary to the present study a higher incidence of fetal dystocias have been described in cattle (Singla et al., 1990; Singla and Sharma, 1992; Purohit and Mehta, 2006; Purohit et al., 2012) and in buffaloes (Singla et al., 1990; Phogat et al., 1992).

In present study uterine torsion (55.74%) is the major cause of dystocia in buffaloes and incomplete dilatation of cervix (50%) in cows. Prasad et al. (2000), Nanda et al. (2003) and Purohit et al. (2011) also found similar results.

In previous studies on cattle indicated that the fetus is the major cause of dystocia (Sloss and Johnston, 1967; Majeed et al., 1989; Khammas and Al-Hamedawi, 1994; Wehrend et al., 2002; Ximenes et al., 2010) and abnormal fetal presentations at birth contribute to 1-5% of total dystocia cases (Nix et al., 1998; Bennett and
Gregory, 2001; Garrousi, 2004). In a study by Purohit and Mehta (2006) there were less frequent fetal dystocias in buffaloes. The incidence of monstrosities reported for cow was 0.5% (Craig, 1930), whereas an incidence of 7.9% (Phogat et al., 1992) to 12.8% (Singla and Sharma, 1992) has been reported for buffalo.

The total incidence of dystocia due to fetal malpositions described for the buffalo vary from 45.4% (Phogat et al., 1992) to 69.8% (Srinivas et al., 2007). In dairy cattle, Wehrend et al. (2002) have observed that incorrect fetal orientation of a dead fetus was the most frequent cause (38.9%) of dystocia and similar findings were recorded by Holland et al. (Holland et al., 1993) in beef cows.

Table 1: Percent Incidence of different type of dystocias in cows and buffaloes

<table>
<thead>
<tr>
<th>Fetal causes</th>
<th>Cows %(n)</th>
<th>Buffaloes %(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal maldisposition</td>
<td>16.67% (15)</td>
<td>18.03% (11)</td>
</tr>
<tr>
<td>Fetal monster</td>
<td>1.1% (1)</td>
<td>-</td>
</tr>
<tr>
<td>Fetal emphysema</td>
<td>3.3% (3)</td>
<td>1.64% (1)</td>
</tr>
<tr>
<td>Total</td>
<td>21.11% (19)</td>
<td>19.67% (12)</td>
</tr>
<tr>
<td>Maternal causes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uterine torsion</td>
<td>24.44% (22)</td>
<td>55.74% (34)</td>
</tr>
<tr>
<td>Incomplete cervical dilation</td>
<td>50% (45)</td>
<td>22.95% (14)</td>
</tr>
<tr>
<td>Narrow pelvis</td>
<td>4.4% (4)</td>
<td>1.64% (1)</td>
</tr>
<tr>
<td>Total</td>
<td>78.89% (71)</td>
<td>80.33% (49)</td>
</tr>
</tbody>
</table>

The incidence of uterine torsion is considered to be higher in buffaloes compared to cows (Purohit et al., 2011). Uterine torsion is considered to be the single largest condition contributing to dystocia in buffaloes with incidence as high as 56% to 67% (Singh et al., 1978; Nanda et al., 1991; Purohit and Mehta, 2006) and up to 70% (Nanda et al., 2003). In cows the incidence is comparatively lower although at various locations it is known to vary between 7 to 30 percent (May, 1950; Pearson, 1971; El Naggar, 1978).

The incidence of cervical dystocia was 11.1 to 16.7 percent (Wehrend and Bostedt, 2003) in cows. The collective incidence of incomplete cervical dilation in cattle and buffaloes was 5.1 percent (Sharma et al., 1992). The incidence of pelvic deformities as a cause of dystocia in buffaloes was 1.2 percent (Deshmukh, 1975). In cows and buffaloes, the incidence of narrow pelvis is known to be 9.2 percent (Sharma et al., 1992).
In conclusion, the maternal causes of dystocia are common in both cows and buffaloes. Overall, incomplete dilation of cervix is common in cows while uterine torsion is common in buffaloes.

References

