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Abstract

Non-deterministic finite automata are a part of finite automata which can accept only valid strings to 
process. It is needed to accept valid strings. Regular expression is used for pattern matching for strings. 
Regular expression cannot give the number of states for a particular automaton. That’s why, we need NFA 
through which we can state total number of states in any automata. There are several methods to convert 
non-deterministic finite automata into regular expression but there are few to convert regular expression 
to non-deterministic finite automata. In this paper, we proposed a method through which one can convert 
regular expression to non-deterministic finite automata by decomposing the input string with the help of 
JFLAP tool.
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An expression over the alphabet Ʃ using the operator (* . +) is called as regular expression. Regular 
expression is a pattern to generate set of string every Regular expression generate only one regular language 
but a regular language can be generated by more than one form of regular expression that is regular 
expression is not unique. Regular expression is just like NFA and generates only the string of Regular 
expression (only valid string). There are many principal methods for converting regular expression to NFA 
one is due to Mc Naughton & Yamada and another is Thomson. In this paper only theoretical concept of 
converting Regular expression to NFA. In NFA no need to define the transition for each and every input 
symbol at each and every state. Transition path in NFA is not unique corresponding to any input string.

Regular operator

Operator Description

* Kleene Closure

. Concatenation

+ Positive Closure
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Properties

Closure Property: Regular expression satisfies the closure properties with respect to Concatenation 
Positive Closure and Kleene Closure.

Associative Property: Regular expression satisfies associative properties with respect to Positive Closure 
and Concatenation but with not respect to Kleene Closure.

Identity Property: Let R is any Regular Expression if there exist a Regular expression ‘x’ such that,

R+ x = R

R.R = R

Here ‘x’ is called identity element.

Annihilator Property: Let ‘r’ is a Regular expression if there exist a Regular expression ‘x’

R + x = x

R. x = x (x = ɸ, R.ɸ = ɸ)

No annihilator with respect to ‘+’

Idempotent property: Regular expression satisfies Idempotent property with respect to Concatenation.

Commutative Property: Regular expression satisfies the Commutative property with respect to Positive 
Closure but not with Concatenation.

Distributive Property: Regular expression satisfies the distributive property with respect to Concatenation 
and Positive Closure. 

Methodology

Method of decomposition (state creation method):

 � Take a two-state machine by taking a regular expression as input.
 � Start decomposing the regular expression string into symbols step by step.
 � If ‘r’ is a Regular Expression then take ‘r’ as an edge for the system which has one initial state 

and one final state
 � Decompose the string until it is divided into symbols by creating the strings.
 � Using this mechanism, we directly obtained NFA from the Regular expression.

Experiment and Results

Input: Regular Expression
Output: Non deterministic Finite Automata
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Regular expression: “b*abab”
According to algorithm take two states:

Fig. 1: Giving the regular expression to machine

Fig. 2: Decomposing the regular expression (step 1)

Fig. 3: Decomposing the regular expression (step 2)

Fig. 4: Decomposing the regular expression (step 3)

Fig. 5: Final NFA after decomposing regular expression into symbols
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Fig. 6: String acceptance on converted NFA

From Figs. 1-6, it is clear that the method is successful to convert a regular expression into a non-
deterministic finite automaton by decomposing the regular expression into each possible symbol.

CONCLUSION

In this paper, we have proposed a method to convert a regular expression into non-deterministic finite 
automata by decomposing the given regular expression into symbols one by one. All the experiments 
are done in the default settings in JFLAP tool. From the results, it is clear that the method is giving the 
accurate results and it does not change the language after the conversion. This is shown in the figure 5, as 
in this figure strings are shown that are accepted by the NFA in the form of starting with any number of 
‘b’ and ending with ‘abab’, which was the input regular expression. The main advantage for this method 
is that it can also convert the regular expression into ɛ-NFA.
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