Int. J. Food Ferment. Technol., 10(2): 95-100, December 2020
©2020 New Delhi Publishers. All rights reserved
DOI: 10.30954/2277-9396.02.2020.5

RESEARCH PAPER Development and Quality Evaluation of Multigrains *Idli*

Adsare A.D.^{1*}, Giram K.K.², Kadbhane V.S.³, Khupase S.P.⁴ and John Devid⁵

¹SRA College of Food Technology Ashti, Beed, Maharashtra, India
²Ph.D Scholar, SHAUTS Prayagraj, Uttar Pradech, India
³SRA College of Food Technology Ashti, Beed, Maharashtra, India
⁴Ph.D Scholar, SHAUTS Prayagraj, Uttar Pradech, India
⁵Professor Dean, WCDT, SHAUTS Prayagraj, Uttar Pradech, India

*Corresponding author: adsareabhijeet1@gmail.com

Paper No.: 247	Received: 19-09-2020	Revised: 17-11-2020	Accepted: 12-12-2020
----------------	----------------------	----------------------------	----------------------

ABSTRACT

Cereals and pulses combination was good nutritional sources of fiber, protein and energy. This research was conducted determining the physio-chemical properties and organoleptic evaluation of developed multigrain *idli*. *Idli* was prepared from Sorghum, Pearl millet, Finger millet, Amaranth and Black gram. All the ingredient for preparation of *idli* was collected from the Krushi exhibition, farmer and local market. Formulation carried out by CRD method. Four different types of *idli* with varying proposition of ingredients was prepared. The composition was T_0 - rice 70 gm and black gram 30 gm, T_1 - sorghum: pearl millet: finger millet: amaranth: black gram; 55:5:5:30; T_2 - 45:10:10:5:30; T3-35:15:10:10:30 respectively. These scores compared with standard *idli*. The quality evaluation of developed *idli* samples such as organoleptic evaluation and physio-chemical parameters. The organoleptic score and physio-chemical parameters of T_3 sample better than other samples. The proximate evaluation of developed *idli* samples such as rich in fiber, protein, calcium, iron and cheap in carbohydrate and fat. The overall evaluations T_3 sample was better than $T_{0'}$ T_1 and T_2 .

Keywords: Idli, Physical, Chemical, Organoleptic, Amaranth

Idli was famous traditional indigenous fermented food consumed throughout India and other countries. This was prepared by steaming a fermented black gram and rice batter. It was important contribution to the diet as a source of protein, calories and vitamins. After cooking *idli* was prepared soft and spongy texture. It was easy to digestible and good nutritive value.

Different types of *idli* were prepared in India such as standard *idli*, rava *idli*, Kancheepuram *idli*, stuffed *idli*, *ragi idli* and curd *idli*. *Idli* was served with sambar and different variety of chutney such as coconut chutney, onion chutney and mint chutney.

The complete or partial replacing of rice with sorghum wasbest effect on the nutritive value by

increasing the fat, fibre, protein, calcium and iron content in the developed multigrain *idli*. Pearl millet was a principal source of energy, vitamins, protein and minerals.

Finger millet (*ragi*) was rich in protein, iron, calcium, phosphorus, fibre and vitamin content. It provides highest level of antioxidants properties, phytochemicals, which make it easy and slowly digestible. Hence it helps to control blood glucose levels in diabetic patients. Amaranth content best quality protein. The "protein complement" of grain

How to cite this article: Adsare, A.D., Giram, K.K., Kadbhane, V.S., Khupase, S.P. and Devid, J. (2020). Development and Quality Evaluation of Multigrains *Idli. Int. J. Food Ferment. Technol.*, **10**(2): 95-100.

Source of Support: None; Conflict of Interest: None

amaranth was very near to the levels recommended by FAO/WHO. Black gram has a mucilaginous material which makes it a valuable ingredient in *Idli* preparation. The chief proteins present in black gram such as albumins, globulins and glutelins. This mucilaginous material helps to hold the carbon dioxide during fermentation.

MATERIALS AND METHODS

The methodology adopted has been described under the following headings process flow chart for preparation.

Raw Material

Selection of good quality and specific variety of raw material from the market such as Sorghum, Pearl Millet, Finger millet, Amaranth, Black Gram for the preparation of *Idli*.

Sl. No.	Ingredients	Varieties
1	Sorghum	Dagdi M-35-1
2	Pearl Millet	Ganga kaveri-1111
3	Finger millet	Ragi ML-365
4	Amaranth	Pusalal chaulai
5	Black Gram	Plant U 30

Table 1: Raw Material Variety

Formulation of *Idli*

Completely randomized designs (CRD)were used for the formulation of *idli*. The four different types of *idli* with different proportion of ingredients were prepared and the composition is given in the Table 2.

Table 2: Formulation of	of <i>idli</i>
-------------------------	----------------

		Sample				
Ingredients	T ₀ (Control)	-T ₁	T ₂	T ₃		
Sorghum (gm)	_	55	45	35		
Pearl Millet (gm)	—	5	10	15		
Finger millet (gm)	—	5	10	10		
Amaranth (gm)	_	5	5	10		
Rice (gm)	70	_	_	_		
Black Gram (gm)	30	30	30	30		

Preparation of *idli*

The all ingredients on different proportion were soaked in 2 to 5 hrs and after soaking Sorghum, pearl millet, finger millet and amaranth were ground coarse and black gram to a fine paste. This paste was mixed together and added of salt. Obtained batter was allowed to ferment for 14 hours after that it was poured in an *idli* steamer and steamed till it for 24 min in medium flame and finally *idli* was done.

Flow chart for preparation of *idli*

Fig. 1: Prepared Sample of Multigrain idli

RESULTS AND DISCUSSION

Proximate evaluation of raw material used for *idli* preparation

The Physico-chemical properties of raw materials were analyzed to check the quality of final product. The nutritional composition of Sorghum, Pearl millet, Finger millet, Amaranth and Black gram given in table 3.

Proximate evaluation of Developed idli

The nutritive value of the developed multigrain based *idli* is presented in table 4.

Organoleptic evaluation of Multigrain idli

The sensory evaluation of *idli* was determined by using a taste panel. This taste panel is a semi-trained

panel using nine-point hedonic scale. By this rating score sample no. T3 has been found best with scoring of 38.05 marks. The acceptability statements and their marks given in table 5.

Physical Parameters of Multigrain idli

Various physical parameters of developed *idli* determined & compare with standard *idli* such as diameter, thickness, weight, fermentation time and time taken for complete steaming.

Microbial analysis of Multigran idli

In microbial analysis Yeast and mould count was observed to be 15×10^4 cfu/g in control *idli* at zero day, on first day it was observed 24×10^4 cfu/g and on second day it was 45×10^4 cfu/g respectively. Total plate Counts (TPC) was observed to be 8×10^4 cfu/g

Table 3: Proximate analysis of raw material used for idli

CI No	Sample				Parameter (%	6)	
Sl. No. Sample	Moisture	Ash	Fat	Fiber	Protein	Carbohydrate	
1	Sorghum	8.37	1.44	3.60	6.15	11.90	74.69
2	Pearl millet	9.46	1.50	4.78	1.24	10.36	73.89
3	Finger millet	11.60	2.08	2.24	3.81	7.24	73.03
4	Amaranth	8.54	2.24	5.24	5.12	11.32	67.54
5	Black gram	9.59	3.45	2.60	18.62	24.85	59.51

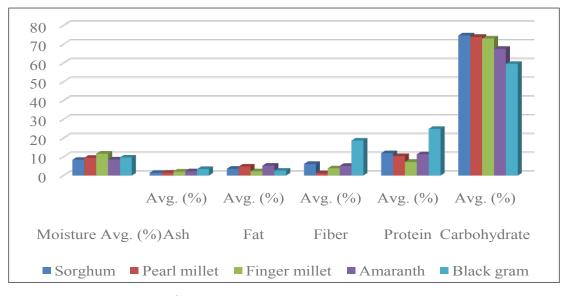


Fig. 2: Proximate analysis of raw material

M Adsare *et al.*

D (Sample		Maria		
Parameter	T	T ₁	T ₂	T ₃	—— Std. Dev.	Mean	CV%
Moisture	63.45	64.92	62.96	62.90	0.80	63.82	1.25
Ash	1.59	1.70	1.82	1.84	0.11	1.73	6.68
Fat	0.86	0.85	0.78	0.73	0.10	0.87	12.39
Protein	7.0	8.75	9.01	9.10	0.98	8.46	11.67
Carbohydrate	31.50	21.30	22.46	21.06	5.0	24.03	20.83
Fiber	1.17	2.50	2.90	2.90	0.82	2.36	34.64
Calcium	25.0	40.86	46.42	50.51	11.18	40.69	27.48
Iron	3.25	3.08	3.52	3.57	0.53	3.03	17.75

Table 4: Nutritive value of the developed *idli* per 100 gm

All values are means \pm SD of the triplicate, CV% = Coefficient of Variance.

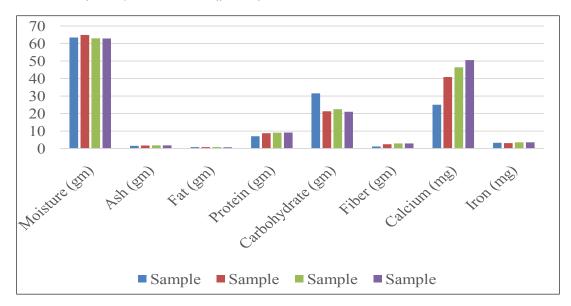


Fig. 3: Proximate Analysis of Developed idli

Table 5:	Organoleptic	Scores of	`Multigrain	idli

Comm1a	Parameter						
Sample	Colour	Texture	Flavour	Taste	Over all acceptability		
T ₀	7.1	7.2	7.1	7.8	7.30		
T ₁	7.7	8	6.9	6.8	7.35		
T ₂	6.9	8.3	7.3	7.4	7.49		
T ₃	7.1	8.3	7.1	7.8	7.57		
Std. Dev.	0.34	0.51	0.16	0.47	0.12		
Mean	7.2	7.95	7.1	7.45	7.42		
CV%	4.81	6.53	2.29	6.34	1.67		

All values are means \pm SD of the triplicate, CV% = Coefficient of Variance.

to zero day, on first day it was observed 15×10^4 cfu/g and second day it was 25×10^4 cfu/g respectively. The *E. coli* count was not detected in anyof the formulated multigrain *idli* on any of the storage days. The

microbiological analysis of multigrain *idli* at different storage period showed that the total plate counts and yeast and mould count increased with increase in storage period. Development and Quality Evaluation of Multigrains *Idli* M

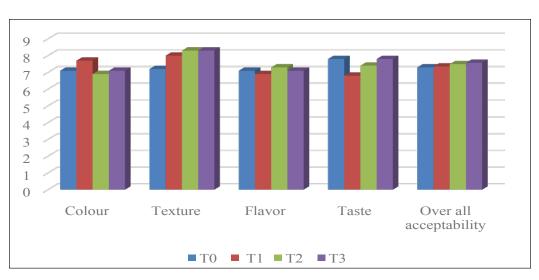


Fig. 4: Organoleptic Scores of Multigrain idli

Table 6:	Physical	Parameters	of Multigrain	idli

D		Sample					CT III/
Parameter	T	T ₁	T_2	T ₃	— Std. Dev.	Mean	CV%
Diameter (cm)	7.2	7.2	7.2	7.3	0.05	7.22	0.69
Thickness (cm)	1.8	1.7	1.9	2.1	0.17	1.87	9.1
Cooking weight of <i>idli</i> (gm)	39.5	39.8	40.1	44.5	2.5	40.8	6.14
Cooking time (min)	24	24	24	24	0	24	0
Fermentation time (hrs.)	14	14	14	14	0	14	0

All values are means \pm SD of the triplicate, CV% = Coefficient of Variance.

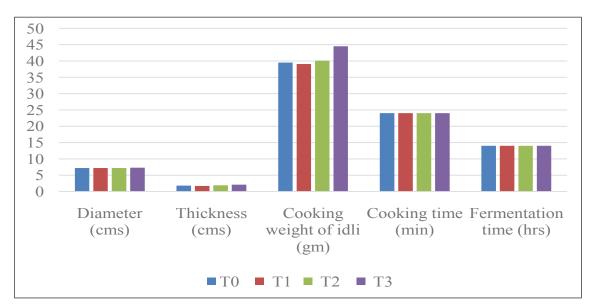


Fig. 5: Physical Parameters of Multigrain idli

\mathcal{N} Adsare *et al.*

	<u>C</u>		Sample	Sample		
Parameters	Storage pe- riod (Days)	Т0	– T ₁	T ₂	T ₃	T ₄
	nou (Duys)	Control	1	1 ₂	1 ₃	4
	0	15	12	13	16	12
Yeast and Mould	1	24	22	20	25	23
(cfu/g 10 ⁴)	2	45	41	44	43	40
	3	TNTC	TNTC	TNTC	TNTC	TNTC
	0	8	7	9	6	8
Total Plate Count	1	15	13	16	18	14
(cfu/g 10 ⁴)	2	25	24	29	22	23
	3	TNTC	TNTC	TNTC	TNTC	TNTC
	0	ND	ND	ND	ND	ND
E. coli count	1	ND	ND	ND	ND	ND
(cfu/g 10 ⁴)	2	ND	ND	ND	ND	ND
	3	ND	ND	ND	ND	ND

Table 7: Microbial analysis of *idli*

*CFU- Colony Forming Unit, TNTC- Too Numerous to Count, ND- Not Detected.

CONCLUSION

The cereal and legume were blends especially high fiber and protein sources. Complete replacing of rice with multigrain was good impact on the nutritive value by increasing the protein, fat, fiber, calcium and iron content in the developed multigrain *idli*. The quality evaluation of developed multigrain *idli* samples such as organoleptic evaluation and physio-chemical parameters. The organoleptic score and physical parameters were T₃ sample better than other samples. The quality evaluation of developed multigrain *idli* T₃ sample was rich in fiber, protein, calcium, iron and less in carbohydrate and fat. The overall analysis of T₃ sample was better than T₀, T₁ and T₂.

REFERENCES

- Ankuzo, H. et al. 2011. Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J. Ethnopharmacol., 135: 88-942.
- Balasubramanian, S. and Viswanathan, R. 2007. Properties of *idli* Batter During its Fermentation Time. *J. Food Proces. Preserv.*, **31**(1): 32-40.

- Nazni, P. and Shalini, S. 2010. Physical and nutritional evaluation of *idli* prepared from sorghum. *Asian J. Sci. Tech.*, **2**: 044-048.
- Nazni, P. and Shalini, S. 2010. Standardization and quality evaluation of *idli* prepared from pearl millet (*Pennisetum* glaucum). Int. J. Curr. Res., **5**: 84-87.
- Nisha *et al.* 2005. Effect of stabilizers on stabilization of *idli* (traditional south Indian food) batter during storage, *Food Hydrocolloids*, **19**: 179-186.
- Reddy, N.R et al. 1982. Legume based fermented foods: Their preparation and nutritional quality. CRC Critical Review 1 in Food Science and Nutrition, 17: 335-370.
- Reddy, N.R. and Salunkhe, D.K. 1980. Effect of fermentation of phytate phosphorous, and mineral content in black gram, rice and black gram and rice blends. *J. Food Sci.*, **45**: 1708-1712.
- Soni, S.K. and Sandhu, D.K. 1989. Fermentation of *idli*: Effects of changes in raw materials and physico-chemical conditions. J. Cereal Sci., 10: 227-238.
- Soni, S.K. and Sandhu, D.K. 1990. Indian fermented foods: Microbiological and biochemical aspects. *Indian J. Microb.*, 30(2): 135-157.
- Sridevi, J. et al. 2010. Selection of starter cultures for *idli* batter fermentation and their effect on quality of *idlis*. J. Food Sci. Technol., 47: 557-563.