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ABSTRACT

Evaluation of sperm quality has been mainly based on subjective parameters included in the 
spermiogram. Results of these parameters have been correlated with fertility but this relationship 
is not always true. Recently, for bull fertility assessment, sperm DNA integrity assessment has been 
proposed as an important index. Sperm DNA integrity has got an important role in success of fertilization 
process and fetal and offspring development. DNA integrity assessment has got a pivotal role in assisted 
reproductive techniques such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), 
besides sperm quality assessment and putative fertility predictor. Various techniques for assessment of 
sperm DNA integrity have been proposed. Using various sperm DNA integrity assays for detection and 
characterization of DNA fragmentation will aid in improving semen storage procedures by identification 
of various protocols which are less likely to be associated with DNA damage. Moreover, sperm DNA 
assays may help in screening bulls that produce good freezable semen with reasonable fertility.
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Various subjective parameters included in the 
spermiogram have been traditionally used for 
evaluation of semen quality (Colenbrander et 
al., 2003; Hidalgo et al., 2009). These routine 
semen parameters have been correlated with 
fertility but this relationship is not always true. 
For predicting fertilizing potential of semen, 
developing more sophisticated and advanced 
technologies continues to be a priority (Alkmin 
et al., 2013). An important aspect of sperm 
quality is sperm DNA integrity (Serafini et 
al., 2016). The integrity of sperm DNA is very 
important for the success of fertilization and 
the development of fetus and offspring (Lopes 

et al., 1998). Semen samples that had normal 
results in spermiogram were found infertile 
when assayed by DNA fragmentation assay 
(Giwercman et al., 2003). The assessment of 
DNA integrity has got a significant importance 
in case of assisted reproductive techniques such 
as in vitro fertilization or intracytoplasmic sperm 
injection (Carretero et al., 2012). DNA damage 
of 1.2–3% is normal in bulls with high fertility 
(Bochenek et al., 2001). Sperm DNA damages 
have been associated with the poor embryonic 
development and genetic abnormalities in the 
offspring (Kasimanickam et al., 2007; Loft et 
al., 2003). Sperm DNA assays may have an 
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important role in improving the selection of 
cattle and buffalo bulls having better quality 
frozen-thawed spermatozoa.

Causes of sperm DNA damage

Factors responsible for DNA damage in 
ejaculated spermatozoa are still not clear but 
two possibilities may be there (Sakkas et al., 
1999): programmed cell death (apoptosis) 
during spermatogenesis and errors in 
maturation during spermiogenesis. Apoptosis 
during spermatogenesis facilitates elimination 
of defective germ cells and contributes to 
efficiency of spermatogenesis. At the time 
of ejaculation, the DNA breakdown is only 
partially completed in some spermatozoa 
which cause a higher percentage of DNA 
fragmentation index (%DFI)in otherwise intact 
spermatozoa (Sakkas et al., 1999). Incomplete 
maturation during spermatogenesis also leads 
to increased %DFI due to the fact that positive 
association exists between sperm DNA damage 
and poor packaging of chromatin due to under 
protamination in mature sperm (Gorczyca et 
al., 1993). The freezing and thawing process 
performed on ram (Peris et al., 2004) and 
bovine (Celeghini et al., 2008; Januskauskas 
et al., 2003) sperm were shown to cause 
permanent structural alterations to DNA that, 
in turn, reduces fertility. The organization 
of sperm chromatin into stable and compact 
structures called toroids, which are attached 
to the nuclear matrix by toroid linker regions. 
These linker regions are highly prone to DNA 
damage (Ward and Coffey, 1991; Sotolongo 
et al., 2003). Enzymatic or oxidative damage 
can result in single (ssDNA) or double strand 
breaks (dsDNA) (Aitken et al., 2013). Breaks in 
ssDNA may result in impairment of fertilizing 
capacity (Ribas-Maynou et al. 2012b; Simon 
and Lewis, 2011), whereas dsDNA breaks may 
be responsible for interference in embryonic 
development and implantation (Lewis and 
Aitken, 2005). Three major hypotheses have 
been proposed to explain cellular mechanisms 
that result in the altered sperm DNA molecule. 

The first is related to torsional stress in 
unconstrained DNA supercoils and is a direct 
consequence of histone-protamine replacement 
during mid-spermiogenesis (McPherson and 
Longo, 1992; Marcon and Boissonneault, 
2004). The second hypothesis regards DNA 
fragmentation as a consequence of oxidative 
stress in the male reproductive tract (Aitken 
et al. 1998; Agarwal et al., 2003). The third 
hypothesis concerns apoptotic-related DNA 
strand breakage, similar to that which occurs 
in abortive apoptosis in somatic cells; the 
presence of caspase 9 in the midpiece and the 
occurrence of activated caspases 8, 1 and 3 in 
the post acrosomal region appeared to support 
this view (Paasch et al., 2004a). However, the 
etiologies of DNA damage are many and varied, 
ranging from bacterial infections (Gallegos et 
al., 2008), chemical toxicity (Rubes et al., 2005), 
elevated temperature (Evenson et al., 2000), 
diabetes (Agbaje et al., 2007), age (Singh et al., 
2003; Wyrobek et al., 2006), body mass (Kort 
et al., 2006), and genetic background (Rubes 
et al., 2007). Whereas many of the factors 
resulting in sperm DNA fragmentation are 
typically unavoidable, certain types of induced 
iatrogenic sperm DNA damage can become 
exacerbated when sperm are inappropriately 
manipulated in the laboratory. Reports have 
previously shown how changes in temperature 
excursions can affect the rate of sperm DNA 
fragmentation during in vitro incubation 
(Rubes et al., 2007). Oxidative stress has been 
implicated as a primary mechanism of DNA 
fragmentation in sperm (Aitken et al., 2006) 
and given that cryopreservation has also been 
shown to increase the level of reactive oxygen 
species in sperm (Mazzilli et al., 1995), it is likely 
also a primary cause of DNA fragmentation in 
cryopreserved sperm (Paasch et al., 2004a). 
Due care in the assessment of sperm DNA is 
particularly important in species with sperm 
predisposed to high rates of sperm DNA damage, 
including sheep (López-Fernández et al., 2008), 
humans (Gosálvez et al., 2009), and fish (López-
Fernández et al., 2009). This effect seems to 
be less critical in other species, e.g. pigs and 
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cattle, where sperm have much lower rates of 
DNA fragmentation following cryopreservation 
(López-Fernández et al., 2009). Spermatozoa 
from rams with superior field fertility displayed 
increased sperm motility, viability, and sperm 
nuclear size. Exposure of sperms to UV light 
was also effective in producing fragmented 
DNA (Carretero et al., 2012). Bull spermatozoa 
that were irradiated with UV light, used in 
IVF, failed to produce embryos beyond 2-cell 
stage, suggesting functional destruction of 
sperm genomic component by UV irradiation 
(Bordignon and Smith, 1999). DNA integrity 
of post-thaw sperm is affected by freezing 
distance and cooling velocity in both manual 
and automated freezing processes. Higher DNA 
fragmentation has been reported in fresh sperm 
of inbred mice compared to outbred and hybrid 
mice. Hypo-osmotic solutions result in higher 
DNA damage as compared to hyper-osmotic 
solutions in mouse spermatozoa (Yildiz et al., 
2010). Chill storage of semen for 48 hours leads 
to significantly increased DNA fragmentation 
in canine (Hidalgo et al., 2009) and equine 
(López-Fernández et al., 2007) semen. It is 
suggested that DNA damage in case of chilled 
spermatozoa occurs before than decline sperm 
quality (Hidalgo et al., 2009). 

Assessment of sperm DNA damage

For evaluation of different aspects of the sperm 
DNA structure, many techniques including 
single cell gel electrophoresis method (Comet 
assay), Sperm Chromatin Structure Assay 
(SCSA) and Sperm Bos Halomax (SBH) assay 
have been developed. SCSA identifies the ratio 
of ssDNA (abnormal) to dsDNA (native) in the 
exposed toroid linker regions, but not in the 
more compact toroids (Shaman and Ward, 
2006). SCSA has been widely used to assess 
sperm DNA quality in men (Evenson et al., 
1980), bulls (Fortes et al., 2012; D’Occhio et 
al., 2013), stallions (Love and Kenney, 1998) 
and boars (Evenson et al., 1994). Contrarily to 
SCSA, for identification of ssDNA and dsDNA 
breaks. Comet assays allow accessibility to 

both toroid and toroid linker regions (Shaman 
et al., 2007). Sperm DNA breaks move away 
from the head region to form comets following 
electrophoresis, while as intact DNA remains 
in the actual head position (Shaman and 
Ward, 2006). Breaks in ssDNA and dsDNA are 
identified by alkaline Comet assay, whereas 
neutral Comet assay identifies mainly dsDNA 
breaks. In contrast Baumgartner et al. (2009) 
proposed that alkaline Comet assay identifies 
only ssDNA breaks and neutral Comet assay 
identifies dsDNA breaks and closely related 
ssDNA breaks. Based on Sperm Chromatin 
Dispersion Test (SCDT) for humans, the sperm 
DNA integrity in bulls has been assessed by 
Sperm Bos Halomax (SBH) assay (Fernandez 
et al., 2003). SBH assay is similar to Comet 
assay except that treated spermatozoa remain 
unexposed to an electrophoretic field in the 
former. Larger halos are produced due to greater 
DNA fragmentation and less fragmentation of 
DNA yields smaller halos (García-Macías et al., 
2007). Which Comet assay (neutral or alkaline) 
may be more accurate for sperm DNA quality 
evaluation remained unclear (Zee et al., 2009; 
Enciso et al., 2011; Ribas-Maynou et al., 2012a; 
Serafini et al., 2015). Cortes-Gutierrez et al., 
(2007) classified DNA fragmentation evaluation 
techniques into two groups. The first group 
includes various methods that are used to 
mark double and simple strand breaks. These 
include incorporation of marked nucleotides in 
situ such as terminal dUTP nick-end labeling 
(TUNEL) or in situ nick translation (ISNT) by 
application of enzymatic processes. The second 
group comprises the techniques that assess 
the denaturalizing ability of chromatin after 
treatment. This group includes techniques such 
as sperm chromatin structure assay (SCSA), 
single-cell-gel-electrophoresis (SCGE), or comet 
assay, the DNA breakage detection-fluorescence 
in situ hybridization (DBD-FISH) and the sperm 
chromatin dispersion (SCD) test. Using neutral 
and alkaline Comet assays, lesser ssDNA and 
dsDNA breaks had been reported in fertile men 
as compared to subfertile men (Ribas-Maynou 
et al., 2012b). 
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Sperm DNA damage in relation to fertility

An important index of fertility potential in vitro 
is sperm DNA integrity (Nijs et al., 2011). Using 
neutral and alkaline Comet assays, lesser ssDNA 
and dsDNA breaks had been reported in fertile 
men as compared to subfertile men (Ribas-
Maynou et al., 2012b). In case of non sex-sorted 
sperm as compared to sex-sorted sperm of bull, 
neutral Comet assay revealed more DNA breaks 
in non-sorted sperm as compared to sex-sorted 
sperm (Boe-Hansen et al., 2005). 

Fertile males have high sperm motility, 
morphology and SCSA measures and consistent 
with sperm quality (Ballachey et al., 1988; 
Love and Kenney, 1998; Serafini et al., 2016). 
In equines (Serafini et al., 2014) and bovines 
(Serafini et al., 2016), the sensitivity values 
of these DNA assays were high (80–86%) and 
specificity values were low (15–26%), which 
provides an indication that these tests are 
better predictor of likelihood of pregnancy 
(i.e., sensitivity) compared to non-pregnancy 
(i.e., specificity). Sperm DNA assays may have 
an important role in improving the selection 
of buffalo bulls having better quality frozen-
thawed spermatozoa. Regarding DNA quality 
assessment, complementary information to 
the SCSA may be provided by neutral Comet 
assay (Serafini et al., 2016). Using the SCSA 
technique, in sexually mature rams, under 
nutrition leads to higher sperm DNA damage 
than in sperm from well-fed rams (Guan et al., 
2014). Variation in DNA fragmentation index 
(DFI %) among different breeds of sheep has 
already been reported (Malama et al., 2013). 
Semen collection frequency affects DNA damage 
in boars (Strzeiek et al., 1995) and may also 
be responsible for alteration in DFI (%) (Guan 
et al., 2014). In human spermatozoa, distinct 
cutoff values for % DFI associated with low 
fertility (15%) and sterility (30%) have been 
established (Evenson et al., 1999). Due to 
well establish differences between chromatin 
packaging density between humans and rams, 
the %DFI in rams is much lower (Evenson et 
al., 2002). Presences of genetic material defects 

viz., impairments in chromatin condensation, 
DNA integrity or chromosomal abnormalities 
are associated with infertility (Aravindan et 
al., 1997; Tsarev et al., 2009). Heat stress 
is one of the potent causes responsible for 
compromised sperm DNA integrity (Banks et 
al., 2005; Perez-Crespo et al., 2008; Carretero 
et al., 2012). Exposure of sperms to UV light 
was also effective in producing fragmented 
DNA (Carretero et al., 2012). DNA damages 
in spermatozoa have been associated with 
poor embryonic development and offspring 
genetic abnormalities (Kasimanickam et al., 
2007; Loft et al., 2003). Functionally intact 
sperm membranes are essential to achieve 
fertilization and integrity of DNA is necessary 
for development of embryo. Although, Reactive 
oxygen species (ROS) in semen play roles in 
normal fertilization processes (Agarwal et al., 
2006) but high levels of ROS cause damage 
to spermatozoa and result in infertility (Yeni 
et al., 2010). Sperm DNA damage is related to 
semen quality and DNA damage is higher in 
poor quality semen samples as compared to 
good quality semen samples (Aoki et al., 2005; 
Sailer et al., 1995). Abnormal spermatozoa have 
capability to fertilize but lack ability to maintain 
pregnancy and before morulla stage, embryos 
are lost (Paul et al., 2009; Fatehi et al., 2006; 
Saleh et al., 2003).

In conclusion, sperm DNA quality is vital 
for conveyance of genetic material to the 
next generation. In assisted reproductive 
techniques such as in vitro fertilization (IVF) 
and intracytoplasmic sperm injection (ICSI), 
assessment of sperm DNA integrity has now 
a day’s got a pivotal role. Alterations in sperm 
DNA integrity may be responsible for impaired 
development of embryo and hence offspring 
abnormalities. Apoptosis and erroneous 
maturation are some potent factors leading to 
DNA damage in ejaculated spermatozoa. Three 
hypotheses proposed to explain alterations 
in DNA integrity include torsional stress due 
to histone-protamine replacement during 
mid-spermiogenesis, fragmentation of DNA 
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in the male tract due to oxidative stress and 
apoptotic-related DNA strand breakage. DNA 
fragmentation detection and characterization 
using various assays will not only help in 
selection of good freezable bulls but also play 
role in identification of various protocols that 
are less likely to be associated with DNA damage 
and thus aid in improving semen storage 
procedures.
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