
Economic Affairs, Vol. 63, No. 3, pp. 761-768, September 2018
DOI: 10.30954/0424-2513.3.2018.23

©2018 New Delhi Publishers. All rights reserved

Generalized Mathematical Expressions for Various Repayment 
Plans and Long Term Cost Comparison
Gourav Kumar Vani*, P.K. Awasthi and R.M. Sahu

Department of Agricultural Economics and Farm Management, JNKVV, Jabalpur-482004, India

*Corresponding author: kumaragri.vani1@gmail.com

ABSTRACT

The financial systems of the day demand greater speed and accuracy which has been provided by 
digitalization delivered though computers. However, iterative programmes are no better than generalized 
formulae in saving time and money. This necessitates efforts in finding generalized mathematical 
formulae. This paper attempts to derive mathematical expression for various repayment plans in general. 
The generalized expressions derived have been further made use in comparing the cost effectiveness of 
repayment plans in long run. The straight end repayment plan remains the costliest plan with partial 
repayment plan being less costly regardless of interest rate and repayment term involved. The cost 
effectiveness of other plans depends on rate of interest and term of repayment.
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A well developed financial system is vital to 
development of a country and its prosperity 
(Duisenberg, 2001; Mayer, 1990). This becomes 
more important given the long gestation periods 
for projects and consequent varying size of cash 
flows needs appropriate repayment schedules to 
avoid debt default crisis. This creates need to have 
special treatment being meted out to borrowers 
with varying needs. The traditional mortgage 
plans (alternatively referred to as repayment plans) 
used by banks have been illustrated by Reddy et 
al. (2004) in detail. Though these repayment plans 
are easy to work out manually but given the large 
chunk of work in banking system and rapidly 
growing baking system, increasingly more work is 
being done with the help of computers in banking 
sector. If various types of repayment plans are to 
be implemented in computer programmes then 
generalized mathematical expressions can save 
a great deal of time and money over iterative 
programmes in creating proper software interface 
for this task. It would be a value addition to 
the work of Reddy et al. (2004) that generalized 
mathematical formulations simplifies the future 
task of banker as well as academicians in studying 

the repayment plans. This paper is devoted to 
deriving the generalized mathematical expressions 
for various types of repayment plans. The said 
output will be used in comparing the repayment 
plans. The plan of the paper is as following: in 
next section methodology is discussed followed by 
section wherein all the repayment plans along with 
generalized mathematical expressions are discussed 
and the ensuing section compares the various 
repayment plans for cost effective in long run with 
final section concluding the paper.

Data base and Methodology

The current study extensively used technique of 
finding sum of geometric progression series. If a is 
the first term in the series and the ratio by which 
successive terms are arrived at is r then series can 
be written as (up to nth term):

a, ar, ar2, ar3,…, ar(n–1) 
Then sum of the n terms in geometric progression 
is given by,

( )
  for  1

a r
S ar r= = ≠∑
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Where ith term of the series is defined as ai = ar(i–1) 
(Wikipedia contributors, 2018).
The other mathematical tool used here is technique 
of limits and differentiation. Further mathematical 
induction has been used to prove that the 
mathematical formulation of the repayment plans is 
true for any practical value of parameters involved.

RESULTS AND DISCUSSION
The result and discussion chapter is divided into 
two parts, A and B. The section A deals with 
generalized mathematical formulations of various 
repayment plans while section B focuses on cost 
comparisons and convergence between various 
repayment plans.

(A) Generalized Formulations of Various 
Repayment Plans

1. Straight-End payment plan or Single Repayment 
Plan or Lump sum Repayment plan

In this repayment plan, farmer pays the interest 
on principal every year but no part of principal 
is paid until the loan reaches maturity. At the 
expiry of the loan period, farmer repays the entire 
principal amount at once along with interest upon 
that principal for the last year. Let’s assume that 
a farmer borrows a loan amount L at the rate of r 
percent per annum for years.

Table 1: Loan Repayment schedule under Straight-
End Repayment Plan

Year Principal Interest Instalment Balance
1 0 L.r L.r L
2 0 L.r L.r L
3 0 L.r L.r L
... … … … …
n L L.r L + L.r 0

Total L n. L.r n. L.r + L —

2. Partial Repayment Plan or Balloon Repayment 
Plan

In this case, instead of avoiding payment of 
principal up to maturity of loan, farmer repays the 
part of principal amount over the years. This plan 
assumes that the enterprise financed will be able to 
generate a large amount at the end of repayment 
period compared to the rest of period. For this 

reason, a large portion of principal is set aside for 
repayment in the last year of repayment period.
Let’s assume that a farmer borrows a loan amount 
L at the rate of r percent per annum for N = n + 
1 years. So, he decides to repay δ amount each 
during first n years towards the principal in 
addition to regular interest and in the Nth year he 
will repay the remaining loan amount all together. 
Let the remaining amount be called Last_year_due. 
This Last_year_due amount is upon the wish of 

farmer-borrower but subject to constraint that L > 

Last_year_due > 0. Let _ _L Last year due

n
δ −

= . Let m 

be a number such that m > n & m = L/δ. Here, m 

can be defined as the term of period, when for all 
years in the repayment term, principal component 
becomes  δ per annum. Now we can write formula 
for Last_year_due as L – nδ. The m can be defined 

in terms of n as .

_ _

n L

L Last year due−
.

Table 2: Loan Repayment schedule under Partial 
Repayment Plan

Year Prin-
cipal

Interest Instal- 
ment

Bal-
ance

1 δ L.r δ + L.r L–δ
2 δ (L–δ).r δ + (L – δ).r L–2.δ
3 δ (L– 2.δ).r δ + (L– 2.δ).r L–3.δ
... … … … …
n δ {L – (n–1).δ}.r  δ + {L – (n–1).δ}.r  L–n.δ

n+1 L–nδ {L – n.δ}.r (L–nδ).(1 + r) 0

Total L ( ) ( )1 . . . 2.

2.

n r L m n

m

+ − ( ) ( )1 . . . 2.

2.

n r L m n
L

m

+ −
+ —

3. Amortized Repayment Plan

Amortization means gradual repayment or writing 
off of an original amount. Like Partial repayment 
plan, here also entire loan is repaid in series 
of instalments which technically speaking is 
amortization of loan amount. However, method of 
calculating the instalment differs from the former. 
Amortization plans are of two types, viz., amortized 
decreasing repayment plan and amortized even 
repayment plan.
3.1 Amortized Decreasing Repayment Plan: 
This plan is basically an extension of Partial 
repayment plan and this will be demonstrated 
mathematically in later part of this section. The 
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principal component has been equally spread 
across all years in repayment schedule. The interest 
component decreases as the outstanding amount 
decreases with every passing year. This leads to 
falling instalment amount over the entire repayment 
schedule. Let’s assume that a farmer borrows a loan 
amount L at the rate of  r percent per annum for n 
years. So, the fixed principal component to be paid 

every year would be L

n
δ = .

Table 3: Loan Repayment schedule under Amortized 
Decreasing Repayment Plan

Year Principal Interest Instalment Balance
1 δ L.r δ+L.r L-δ
2 δ (L–δ).r δ+(L–δ).r L–2.δ
3 δ (L–2.δ).r δ+(L–2.δ).r L–3.δ
... … … … …
n δ {L-(n–1).δ}.r δ+{L–(n–1).δ}.r L–n.δ=0

Total n.δ=L ( ). 1

2

r L n + ( ). 1

2

r L n
L

+
+ —

3.2. Amortized Even Repayment Plan: In this plan, 
instalment amount is kept constant over entire 
repayment schedule and for this reason it is called 
equated annual instalment method. The interest 
component is arrived at by calculating interest on 
principal amount outstanding in previous period 
and principal component of this instalment is 
arrived at by deducing the interest component from 
instalment. Let’s assume that the banker fixes the 
instalment to be I amount per annum for a loan of 

L amount rented at the rate of r per cent per annum 
to be repaid back in years.
Here, formula for calculation of instalment amount 
can be derived as following:
Since balance at the end of the nth year must be zero 
and hence we take the expression for balance at the 
end of the nth year.

�� �1 � ��� − �� ��1 � ��� − 1
� � 	� �											 ⟹ �� �1 � ��� � �� ��1 � ��� − 1

� � 

⟹ �� �1 � ���� � � �� ��1 � ��� − 1� 											⟹ �� �1 � ���� �
��1 � ��� − 1� � �						 ⟹ �� �

�1 − �1 � �����
� � 

 

(B) Convergence and Cost comparisons among 
Various Repayment Plans

1. Amortized Decreasing and Partial Repayment 
Plan

It is interesting to note that in case of partial 
repayment plan, as the value of m→N the partial 
repayment plan approaches to amortized decreasing 
repayment plan. At the last when m=N then partial 
repayment plan becomes amortized decreasing 
repayment plan. In this extreme case, Last_year_due= 
L/N. Mathematically, for interest component, it can 
be represented as following:

lim���
�� �� �� �2�� � � � ��

2�� = �� �� �
2  

Where N is as defined earlier in Partial repayment 
plan.

Table 4: Loan Repayment schedule under Amortized Even Repayment Plan

Year Instalment Interest Principal Balance

1 I L.r I – L.r L – I + L.r = L.(1 + r) –I

2 I L.(1 + r).r – I.r I.(1 + r) – L.(1 + r).r L.(1 + r)2 – I.(2+r)

3 I L.(1 + r)2.r – I.(2+r).r I.(1 + r)2 – L.(1 + r)2.r L.(1 + r)3 – I.(3 + 3.r + r2)

4 I L.(1 + r)3.r – I.(3 + 3.r + r2).r I.(1 + r)3 – L.(1 + r)3.r L.(1 + r)4 – I.(4 + 6.r + 4.r2 + r3)

... … … … …

n I (L.r – I).(1+r)n–1 + I (I – L.r).(1+r)n–1 ( ) ( )1 1
. 1 .

n
n r

L r I
r

 + − + −  
  

Total n.I ( ){ }.
. . 1 1

.

L r I
n I r n

r

n I L

− + + −  
− −

( ){ } .
1 1 .

n I L r
r L

r

− + − =   n.I
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Fig. 1: Interest (Total) Vs. m for Partial and Amortized 
Decreasing Repayment Plans

Fig. 1 shows that for L = 10000, r = 0.12 and  N = 6, 
then total interest for partial repayment plan equals 
to total interest for amortized decreasing repayment 
plan when m = N.
Now similarly comparing the balloon repayment 
plan with amortized decreasing repayment plan 
as following:

����������������������������������������������������������
��������������������������������������������

= �� � ��� �� � �⁄
�� �� �� ��� � � � �� ��⁄

 
which upon simplification leads to 

1

2 1

N m

N m N

+   
      − +  

This ratio upon substitution and simplification leads 

to 1 1
_ _

1

N
Last year dueN

L

 
 − 
     +
 

. This ratio1 is < 1 for 

as long as Last_year_due ≥ δ, Amortized decreasing 

repayment plan works out to be cheaper than 
balloon repayment plan for farmers in long run for 
equal number of years in repayment schedule. This 
is also evident from Fig. 2.
It is interesting to note that, when, Last_year_due = 
0 then m = N – 1 and the mathematical expression 
for total instalment under Partial Repayment plan 

reduces to .
. 1

2

N r
L

 +  
. While the expression for total 

instalment under Amortized Decreasing Repayment 

Plan is ( )1 .
. 1

2

N r
L

 +
+  

. Now the difference between 

the two expressions is the reason why total 
instalment under Partial repayment plan lags that 
of under Amortized Decreasing repayment plan 
year- on-year. Table 5 illustrates the case discussed 
above for L = 100000, r = 19% and Last_year_due = 0..
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Fig. 2: Convergence of Interest (Total) component of Partial 
Repayment Plan towards Straight-End and Amortized 

Decreasing Repayment Plan

Table 5: An illustration of lead-lag relationship in 
total instalment for Partial and Amortized Decreasing 

Repayment Plan

N Amortized Decreasing 
Repayment Plan 

Partial 
Repayment Plan m

1 119000 #DIV/0! 0.00000 
2 128500 119000 1.00000 
3 138000 128500 2.00000 
4 147500 138000 3.00000 
5 157000 147500 4.00000 
6 166500 157000 5.00000 
7 176000 166500 6.00000 
8 185500 176000 7.00000 
9 195000 185500 8.00000 

10 204500 195000 9.00000 
….. …… …… ….. 
24 337500 328000 23.00000 
25 347000 337500 24.00000 

Similar to the lead-lag relationship being examined 
above, it is equally interesting to note that when 
Last_year_due = L/2, the direction of lead-lag 
relationship reverses, from earlier one being 
Amortized Decreasing Repayment Plan to Partial 
Repayment Plan to Partial Repayment Plan to 
Amortized Decreasing Repayment Plan. When 
Last_year_due = L/2, then mathematical expression 
for instalment under Partial Repayment Plan 
reduces to L.(0.75 N.r + 1) and it is L.{0.5 (N+1).r + 
1} for Amortized Decreasing Repayment Plan. The 
series of lag period is an arithmetic progression 
with initial lag period being one and distance 
between successive lag periods equal to one. Table 
6 illustrates this case.

1This ratio can alternatively be written as 
1

_ _
N

Last year due
N

δ

+

+
where δ 

= L/N. This expression proves the statement that for Last_year_due ≥ δ, 
the Partial repayment plan remains a costlier than Amortized decreasing 
repayment plan.
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Table 6: An illustration of Reversal of lead-lag 
relationship in total installment for Partial and 

Amortized Decreasing Repayment Plan

N Amortized Decreasing 
Repayment Plan 

Partial Repayment 
Plan

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Note: The curly bracket shows lag period length and the arrow 
line shows the lag.

2. Straight-End and Partial Repayment Plan

Analogous to previous case, if m tends to infinity 
then partial repayment plan approaches Straight-
End Repayment Plan because as, m → ∞, δ → 
0 [m = L/δ; L ≠ 0. This makes Last_year_due = L 
because δ has been defined as L – Last_year_due/n. 
Now, convergence of interest component of Partial 
repayment plan to Straight-End repayment plan can 
be shown as following:

lim��∞
�� �� �� ���� � � � ��

��� � �� �� � 

Fig. 2 illustrates the above case wherein as Last_
year_due approaches then interest (Total) for partial 
repayment plan also approaches interest (Total) 
for straight-end repayment plan. Thus, from 
above explanations, about range of m, it can be 
inferred that N – 1 ≤ m ≤ ∞ with lower extremum 
being achieved with Last_year_due = 0 and higher 
extremum being achieved with Last_year_due = L.
Since, principal paid is same in both cases, hence 

only interest component needs to be compared to 
see which one is cost-effective.

��������������������������������������������������
��������������������������������������������

= �� �� �
�� �� �� ��� � � � �� ��⁄  

This ratio can be simplified as ( )
2

2 1

m

m N− + . In this 

ratio,after substitution of expression for from Partial 
repayment plan and simplifying terms leads to 

2
_ _

1
Last year due

L

 
 
 
 +
 

. Now this ratio can have two 

extreme values for the extreme values of parameter 
Last_year_due: for Last_year_due = 0, this ratio equals 
two while for Last_year_due = L, this ratio equals 
one. Thus, for for L > Last_year_due > 0, the ratio 
has values less than one2.
Hence, it can be concluded that for equal number 
of years if farmer serves loan amount under two 
different repayment plans under comparison then 
balloon repayment plan stands to be cheaper to 
farmer.

3. Amortized Even and Partial Repayment Plan

To compare the Amortized Even repayment plan 
with Partial repayment plan, we solve the ratio of 
instalments of two plans as following:

�������������������������������������������������������
������������������������������������������������

= �� �� � �� � �� � �����⁄
� � �� �� �� ��� � � � ��

��
 

This ratio simplifies to,

� 1
1 � �1 + ������

1
1
�� � + �12 +

�������������
2� � �

� 

Now applying limits to find limiting value of this 
ratio as following:

lim��∞ �
1

1 � �1 + ������
1

1
�� � + �12 +

�������������
2� � �

� = 1
�12 +

�������������
2� � �

 

2 We are excluding the case of Last_year_due = 0 because only admissible 
value according to convergence possibility is Last_year_due = L not the 
former one.
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Now the value of this ratio solely depends on 
Last_year_due as following:

 

2 for ����_����_��� = � 

1 for ����_����_��� = � 

>1 &<2  for� � ����_����_��� � � 

1
�12 +

����_����_���
2� � �

	 	= 

Thus, it can be inferred that for n → ∞ and Last_
year_due = L, instalment component of both the 
plans converges. This convergence shall as well 
happen for interest component as well. This result 
also tells that Amortized Even repayment plan will 
be costlier than Partial repayment plan for every 
year increase in repayment schedule. The result 
achieved on finding limiting value of ratio for r → 
∞ will be same as that of n → ∞. This implies that 
for any term of repayment, a sufficient increase 
in rate of interest will make no difference in cost 
involved with either plan used if Lastyeardue) = 0, else 
Amortized even repayment plan will cost more to 
borrower than Partial repayment plan.

4. Amortized Decreasing and Even Repayment Plan

Similarly, comparison is taken up between amortized 
even repayment and amortized decreasing 
repayment plan as following:

�������������������������������������������������������
�������������������������������������������������������������
= ��� �� � �� � �����⁄

� ��� � �� �⁄  

Upon simplification of this ratio yields,

2���
���1 + ����1 � �1 + ����� � � 2

1 � �1 + ����� �1 +
1
��� 

To find the limiting value of the above ratio, we use 
concept of limits as following:

lim��∞ �
2

1 � �1 + ����� �1 +
1
��� = 2 

This result implies that as number of years in 
repayment schedule increases the Amortized Even 
repayment plan works out to be costlier than 
Amortized Decreasing repayment plan, irrespective 
of rate of interest. For r → ∞, the above ratio will 
approach a limiting value of two as well which 
means that irrespective of number of years in 
repayment schedule, Amortized even repayment 
plan will cost more than Amortized decreasing 
repayment plan.

5. Straight-End and Amortized Even Repayment 
Plan

To compare the Amortized Even repayment plan 
with straight end repayment plan, we solve ratio 
of instalments of two plans as following:
�������������������������������������������������������
���������������������������������� � ������������������
= ��� �� � �� � �����⁄

���� � ��  

This ratio simplifies to,

� 1
1 � �1 + ����� �1 +

1
��� 

and from previous case, it is obvious that the 
limiting value of this ratio works out to be one. 
Thus, as n → ∞, instalment component in both 
plans converge. This ratio will also approach one 
for r → ∞.
It is also interesting to note that, as n → ∞, annual 
instalment under Amortized Even repayment plan 
converges to interest component annual and annual 
instalment for first n – 1 years. This can be shown 
mathematically as following:

lim��∞, �� � �� � �� � �����⁄ � �� � 

6. Amortized Decreasing and Straight-End 
Repayment Plan

To compare these two plans, first their interest 
components are compared as following:

��������������������������������������������������
����������������������������������������������������������
= �� �� �
�� � ��� �� � �⁄  

This ratio upon simplification reduces to 2.n/1+n 
the value of which approaches two as n → ∞. For 
n = 1, this ratio has value of one. Thus as number 
of years in repayment plan increases, Straight-End 
repayment plan goes on to become more and more 
costly and in extreme case it will cost double the 
interest paid in Amortized Decreasing Repayment 
Plan, regardless of interest rate charged. To shed 
more light on the costs involved in these two plans, 
comparison of total instalment component is taken 
up as shown below:
�������������������������������������������������������������

���������������������������������� � ������������������
= � � ��� � �)� �� � �� �

���� � �)  
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This ratio upon simplification reduces to 
1 1

1
2 1 .

r

n r

+ +  +
. For n → ∞, this ratio approaches 0.5 irrespective 

of rate of interest involved. This means as number 
of years in repayment plan increase, Amortized 
decreasing repayment plan tends to be cheaper 
irrespective of rate of interest involved. For r → ∞, 

this ratio becomes 
1 1

1
2 1 n

 +  +
. This implies that as 

rate of interest increases, Straight-End repayment 
plan becomes costlier than Amortized decreasing 
repayment plan, irrespective of term of repayment.
The lead-lag relationship observed in section 3.1 
is also evident in this case: total instalment under 
Straight –End Repayment Plan for n number of 
years in repayment appears under Amortized 
Decreasing Repayment Plan with lag period of n – 1 
years. Table 7 illustrates this case. From Table 6A, it 
can be observed that lag period for is n = {2,3,4,5} is 
{1,2,3,4}, respectively. The series of lag period is an 
arithmetic progression with initial lag period being 
one and distance between successive lag periods 
equal to one.

Table 6A: An illustration of lead-lag relationship 
in total instalment for Straight-End and Amortized 

Decreasing Repayment Plans

Amortized Decreasing 
Repayment Plan 

Straight-End 
Repayment Plan 

1
2
3
4
5
6
7
8
9
10

 
Note: The curly bracket shows lag period length and the arrow 
line shows the lag.

CONCLUSION
This paper has derived generalized expression 
for various repayment plans which not only have 
its utility in banking and academics It also serves 
attract attention from mathematically oriented 
Economist who will study the these plans further 
with greater interest and will come out with better 
suggestions to improve farming community. A 

Table 7: Summary of Convergence among Repayment Plans

Straight-End Partial Amortized Decreasing  Amortized Even 
Partial/Balloon 
(Interest Component) 

� � ∞  or 
����_����_���
� �

- � � � or 
����_����_��� � ���

� � ∞&
����_����_��� � �

Amortized Decreasing  
(Interest Component) 

- - - � � ∞ with cofactor 
of 2*

Amortized Even 
(Instalment Component) 

� � ∞ - � � ∞& cofactor of 0.5 -

Table 8: Summary of Cost Comparison among Repayment Plans

 Straight-
End

Partial Amortized 
Decreasing 

Amortized Even 

Partial/Balloon Less — Less with 
����_����_��� � �

Depends on value of 
�� � � �����_����_���� �

Amortized 
Decreasing  

Less Less with 
����_����_��� � �

— Less 

Amortized 
Even 

Less Depends on value of 
�� ��� �����_����_���� �

More — 
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summary of the results of convergence and cost-
comparison among various repayment plans has 
been provided in Table 7 & 8.
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