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ABSTRACT

Price fluctuations in agricultural commodities have a negative impact on the country’s GDP. Price 
prediction assists the agricultural supply chain in making necessary decisions to minimize and manage 
the risk of price fluctuations. Although traditional models for forecasting, such as ARIMA and exponential 
smoothing, are widely used, it is difficult to predict price fluctuations accurately, especially when dealing 
with large amounts of data. To overcome this lacuna, various machine learning and deep learning models 
have recently been used to forecast price series. To be precise, the most significant finding is that deep 
learning models are suitable for predicting commodity prices.

HIGHLIGHTS

 m RNNs have been applied for forecasting time series data in most scientific and industrial fields, but 
mainly in commodity price forecasting.

 m RNNs, such as the gated recurrent unit, LSTM neural network, and improvement models, can be 
powerful prediction alternatives to traditional neural networks and can obtain better prediction results.

Keywords: Commodity Price, deep learning, recurrent neural network, time series

Volatility in agricultural commodity prices is an 
ongoing concern where policymakers, as well 
as all participants in the food supply chain, are 
interested. There need to be a better understanding 
of what is expected in future evolution. Farmers in 
some countries, now face several risks that were 
previously absorbed by market and price support 
policies (Matthews, 2010). Nonlinearity, uncertainty, 
and dynamics are complex volatility characteristics 
of agricultural commodity prices that make 
prediction difficult with high chances of uncertain 
results (Cheng, 2015). Currently, there are two types 
of agricultural commodity price forecasting methods 
that are traditional forecasting and intelligent 
forecasting. Traditional forecasting techniques 
include three methods such as autoregressive 
moving average (ARIMA), Exponential smoothing, 
and Autoregressive Conditional Heteroskedasticity 

(ARCH) (Gowthaman, 2022; Jadhav, 2018). These 
traditional forecasting models require a long time to 
process the data, and they have difficulty projecting 
accurate price changes (Chen, 2019). Additionally, 
the majority of these techniques operate under the 
presumption that time series data is stationary and 
linear. Besides, real-time series data that is dynamic, 
non-linear, and non-stationary is not sufficiently 
captured (Karia, 2011). With the advancements 
in machine learning methods, many researchers 
use intelligent forecasting methods to predict the 
price of products, such as Neural Networks (NN), 
Support Vector Regression (SVR), and Genetic 
algorithms (GA) (Duan, 2017). These intelligent 
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forecasting methods can outshine traditional 
methods. However, they can’t process temporal 
data (Chen, 2019). To overcome this, a new class 
of emerging forecasting methods like recurrent 
neural networks (RNN), is helpful in the temporal 
correlation of time series analysis. As a special RNN 
model, long short-term memory (LSTM) avoids 
vanishing gradient (problem for highly dependent 
data) and exploding gradient during training 
effectively (Pascanu, 2013; Hochreiter, 1997). Ahmed, 
(2010) opines that machine learning techniques can 
outperform conventional econometrics techniques. 
With the use of feature attention and temporal 
attention, they successfully forecasted prices, which 
explains the relationships between input factors 
and outcomes. Ran et al. (2019) utilized an LSTM 
model with an attention mechanism for the travel-
time prediction where this mechanism was able to 
focus well on the variations in input features, and 
the attention-based LSTM model outperformed 
alternative baseline models. An evolutionary 
attention-based LSTM model was proposed by Li 
et al. (2019), and it was used to analyze data from 
Beijing’s particulate matter 2.5 (ug/m3) levels. By 
autonomously choosing crucial input variables 
through financial time-series prediction using an 
attention-based LSTM model, Zhang et al. (2019) 
successfully addressed a long-term dependence 
issue. LSTM models are non-parametric, they can 
handle non-linear patterns appropriately and do 
not require the error term to follow a distribution, 
which is one of the goals of using them. Ly et al. 
(2021) opines that unit roots do not affect LSTM 
models since they do not need the underlying data 
to follow a stationary process.

1. Deep learning models

This section provides an overview of the theoretical 
background of the selected deep learning models. 
We describe deep learning neural networks and 
their activation function.

1.1 Recurrent Neural Networks

In the 1980s, Williams and Zipser created the first 
recurrent neural networks (RNN). It takes into 
account the dimension of time to improve outcomes 
when analyzing time series data. It was used in 
sequence analysis techniques for processing text, 
sound, and video (Zhang, 2017). Fig. 1 illustrates 

a basic RNN structure that includes input vectors 
(x), hidden unit vectors (H), and hidden state 
vectors (O). Here, at each time step, the hidden 
units generate a concealed state vector. A network 
structure at time t, along with its previous and 
following time steps, is shown in the Fig. 2 graphs as 
t, t-1, and t + 1. The weight values between various 
levels are represented by W, U, and V. The dynamic 
information from the sequences can endure and 
flow from one-time step to the next in the network 
due to the interconnected hidden units forming a 
self-looped structure, which aids the RNN’s ability 
to remember previous information.

 

Fig. 1: Self-loop structure of recurrent neural networks

 
Fig. 2: Recurrent Neural Network

Previous hidden state (ht) can be formulated as;

( )1tanh . .t t th U x W h −= +  …(1)

RNN deals with finding and modeling relations 
and extracting information from time series data. 
In recent times, RNN has tackled a wide range of 
problems in which it replaces its standard activation 
functions with discrete wavelet transformation. In 
particular, it is compared to traditional activation 
function like the sigmoid and tangents hyperbolics. 
It is evident that better information flow regulation 
could lead to a rise in modelling accuracy. However, 
vanishing gradients are a drawback of RNN. 
Therefore, long-term non-stationary dependencies 
are harder to get detected by RNN (Motazedian, 
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2019). To address this issue and create a defined 
memory capacity, RNNs are enlarged using 
elongated recurrent skip connections. This allows 
the capture of dependencies in time series data. 
Without the need for network-wide propagation, the 
skip connections allow the direct processing of data 
from previous time steps. Therefore, the average 
duration of the skip links has a significant impact 
on whether long-term or short-term dependencies 
are absorbed more so than the other. According 
to Qin et al. (2017), RNNs are especially useful for 
predicting highly dynamic, time-variant systems 
that are subject to stationary or non-stationary short-
term dependencies.

1.2 Gated recurrent unit (GRU)

In 2014, Cho et al. proposed and established the 
gated recurrent unit (GRU) to address the vanishing 
gradient issue that affected conventional recurrent 
neural networks (RNN). GRU has several long 
short-term memory characteristics in which a 
gating mechanism is used by both LSTM and 
GRU algorithms to regulate the memorization 
process. The advantage of GRU is that it has fewer 
parameters than LSTM, which results in more 
efficient computing with less complexity (Wang, 
2018). Reset and update gates are the only gates 
present in GRU, because it chooses which data 
should be saved or erased, the update gate in an 
LSTM is identical to the forget and input gates. The 
reset gate determines how much information needs 
to be forgotten. As a result, GRU takes less time to 
train than LSTM.
The structure of GRU is shown in Fig. 3; a 
relationship between the input and output for GRU 
can be written as:

( )1. .t r t r t rr w x u h bσ −= + +  …(2)

( )1. .t z t z t zz w x u h bσ −= + +  …(3)

( )( )1tanh .t n t n t t na w x u r h b−= + ∗ +  …(4)

( ) 11 .t t t t th z h z a−= − + ∗  …(5)

Where rt is the reset gate, zt is the update gate, αt is 
the memory content, σ and tanh are the activation 
functions, and ht is the final memory at the 

current time step. The reset and update gates have 
values from 0 to 1 through the sigmoid function 
in equations (1) and (2). On the other hand, the 
memory content, using the reset gate to store the 
relevant information from the past, has a value 
between -1 and 1 through tanh.

 

Fig. 3: Gated recurrent unit neural network

1.3 Long Short-Term Memory networks

Long short-term memory (LSTM) is a special 
type of RNN. Hochreiter and Schmidhuber 
(1997) introduced the LSTM network, which was 
continually refined in subsequent works such as 
Gers et al. 1999 and 2000; Cho et al. 2014. RNNs have 
been successfully applied in various fields, such as 
speech recognition, language modelling, machine 
translation, image captioning, text recognition, and 
action detection in video streams (Mikolov et al. 
2014; Ullah et al. 2017). Since the LSTM network is 
capable of handling sequence dependence among 
observed inputs, it is well-suited to sequence 
prediction problems, especially for non-linear and 
complex time-series data (Guo et al. 2016; Hsu, 
2017).
Due to the vanishing gradient phenomenon, 
the RNN is unable to capture multiple time 
dependencies and long-term dependencies. Gating 
mechanisms are created as a result to take the 
place of activation functions. Three gates, an 
input, a forget gate, and an output gate found 
in each LSTM cell enable changes to be made to 
a cell’s state that are iteratively propagated to 
capture long-term dependencies. The network can 
memorize numerous time dependencies because 
of this controlled information flow within the cell. 
The primary application of LSTM is the modelling 
of long-term dependencies. The Gated Recurrent 
Unit (GRU) is an alternative to LSTM that predicts 
long-term dependencies with superior short-term 
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information integration (Cho, 2014). GRU has an 
update and reset gate, whereas LSTM has a gating 
system and a more condensed cell structure. The 
cell state in GRU can be changed at each iteration 
and updated with recent data via the reset gate. 
The change gradient that can be realized at each 
iteration is constrained by a mechanism provided 
by LSTM. Unlike GRU, LSTM does not permit the 
complete discarding of historical data. According to 
research by Chung et al. (2014) on cell architecture, 
cells with a gating mechanism perform noticeably 
better than cells without a gating mechanism, 
i.e., the traditional RNN. In the context of a 
comprehensive investigation of variants of several 
network architectures, Britz et al. (2017) established 
the superiority of LSTM over GRU. It might be 
discovered that the LSTM gating mechanism aids in 
the filtering of unimportant input data and enhances 
modelling precision for time-variant behaviour. 
Besides inheriting the structure of a chain-like 
repeating hidden layer in a neural network from 
the RNN, the LSTM has a redesigned sophisticated 
memory block in the hidden layer, which mainly 
consists of four parts: forget gate, input gate, output 
gate, and memory cell as shown in Fig. 4. At a given 
time ‘t’, the mechanism of the LSTM can simply be 
concluded in the following steps.

 1. Decide the extent of information throw away 
from the output at last time step ht-1and new 
input xt at forget gate ft:

[ ]( )1,t f t t ff w h X bσ −= +  …(6)

 2. Determine how much information should be 
added to memory cell state Ct at the input 
gate it, and a candidate memory cell state Ct 
is updated:

[ ]( )1,t i t t ii w h X bσ −= +  …(7)

[ ]( )1tanh ,t c t t cC w h X b−= +  …(8)

 3. Update current memory cell state Ct using 
Ct-1 and Ct:

1t t t t tC f C i C−= ∗ + ∗   …(9)

 4. Calculate the output ht to next memory cell 
at output gate Ot:

[ ]( )1,t o t t oO w h X bσ −= +  …(10)

( )tanht t th o c= ∗  …(11)

Where f, i, o, and C represent forget gate, input gate, 
output gate, and memory cell state, respectively. W, 
U, and b denote the input weight, recurrent weight, 
and bias of a certain hidden layer component, 
respectively. σ and tanh are the logistic sigmoid 
function and hyperbolic tangent function as 
activation function, respectively.

 
Fig. 4: Long short term memory neural network

The output value varies with the activation function. 
The activation function sometimes referred to as the 
transfer function, is a mathematical formula that 
predicts the output of neurons and is subdivided 
into linear and nonlinear functions. The outcomes 
of a linear activation function are also linear 
between the input and output layers. For practical 
application, however, such a linear relationship is 
insufficient because the issues entail complicated 
information and a variety of characteristics, 
including image, video, text, and sound. A neural 
network with a nonlinear activation function can 
overcome the limitations of the linear activation 
function. The rectified linear unit (ReLU) and 
leaky ReLU are examples of nonlinear activation 
functions because the slope is not constant for all 
values. Especially for ReLU, the slope is either 0 for 
negative values or 1 for positive values.

1.4 Measurement criteria

Measurement criteria are critical for explaining the 
forecast performance of deep learning models. The 
typical evaluation metrics for commodity price 
forecasting are RMSE (Root mean square error) and 
MAPE (Mean absolute percentage error).
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2. Related past studies on agricultural 
commodity prices time series

Deep learning (DL), an essential component of 
artificial intelligence (AI), has made significant 
strides in recent years. DL automatically identifies 
key properties from the data. Other Machine 
learning (ML) methods gain from deep learning-
driven methods because they don’t rely on feature 
engineering (Dairi et al. (2021)). Nassar et al. (2020) 
showed that deep learning models, LSTM, and 
CNN-LSTM are effective in the precise prediction 
of fresh produce prices for up to three weeks in 
advance using time series datasets of vegetables, 
fruits, and flowers. They did this by comparing 
the performance of deep learning price prediction 
models with eight statistical as well as benchmark 
machine learning models. The LSTM neural 
network was shown effective by Sabu and Kumar 
(2020) when they employed time-series and 
machine learning models to estimate the monthly 
prices of arecanuts in Kerala. When comparing 
the appropriateness of ARIMA and deep learning 
models on various datasets, including daily, weekly, 

and monthly data, Weng et al. (2019) determined 
that the deep learning approach was the best one 
for predicting agricultural product prices.
In a different study by Chen et al. (2019), wavelet 
analysis was used to lessen the noise in the cabbage 
data. The refined normalised data was then applied 
to the LSTM model, which produced superior 
accurate results. Zhu et al. (2018) summarised the 
main deep learning approaches and demonstrated 
how DL techniques including Convolutional Neural 
Network (CNN), RNN, and Generative Adversarial 
Network (GAN) are gaining popularity among 
researchers working on farm price forecasts. The 
wheat prices dataset was analysed using the LSTM 
method by Rasheed et al. in 2021. Their investigation 
showed that LSTM was outperforming other 
traditional machine learning and statistical time 
series models substantially
All the studies cited above and details of related 
studies found in Table 1 lead to the following few 
important inferences.
 1. There are many studies with various models 

(statistical, ML, and DL-based) used for 
prediction tasks of many agricultural 
commodity prices.

 2. Literature studies indicate that deep learning 
models perform better as compared to 
machine learning in the tasks of agricultural 
commodity price forecasting.

Table 1: Related Studies

Name of the 
Author Name of the commodities Deep learning model used Results

Chen, et al. Chili, Tomato LSTM Baseline models: ARIMA, 
SVR, Prophet, XGboost

The LSTM was forecasted to 
produce the best results.

Manogna, et al. Cotton seed, caster seed, rape mustard 
seed, soybean seed, and guar seed ARIMA, TDNN, LSTM LSTM was forecasted with high 

accuracy.

Gu, et al. Cabbage, Radish LSTM, GCN-LSTM, DA-RNN, 
DIA-LSTM

DIA-LSTM performed the best 
result.

Kurumatani, K. Cabbage, Tomato, Lettuce LSTM (Recurrent neural 
network)

LSTM model provided a better 
forecast.

Ly, et al. Cotton seed, Castor seed, Rape mustard 
seed, Guar seed, soybean seed

LSTM Baseline models: ARIMA, 
TDNN

The optimum performance was 
obtained by the LSTM.

Jin, et al. Chinese cabbage, Radish LSTM LSTM provided a better forecast.

Murugesan, et al. Rice, Wheat, Gram, Banana, 
Groundnut.

LSTM, Bi LSTM, Stacked LSTM, 
CNN LSTM, Conv LSTM

Among five models LSTM model 
obtain promising results.

Prakash and 
Farzana Tomato LSTM

The LSTM is one of the most 
effective models for dealing with 
nonlinear parameters.



Gowthaman et al.

566Print ISSN : 0424-2513 Online ISSN : 0976-4666

2.1 Training Time

Deep learning with many parameters requires 
distributed training where training time is critical. 
Training time is the product of the deep learning 
models that must be performed to reach the desired 
level of accuracy. To achieve optimum performance, 
each deep learning model requires a varied amount 
of training time. Hence, we compared the training 
time for each model to know which model is more 
efficient. To experience information training time in 
the best, worst, and average circumstances, Wang et 
al. (2018) conducted forecasting tests for LSTM and 
GRU. LSTM and GRU’s training timeframes in the 
three scenarios shown in table 2 indicate that GRU 
is superior to LSTM since its longest training period 
is shorter than its best period.

2.2 Forecast Horizon

The forecast horizon, which is the amount of time 
in the future that a model can anticipate, has a 
significant impact on the forecast’s performance 
and characteristics. Ouyang et al. (2019) studied 
a long-short-term time series network model for 
predicting agricultural commodity prices. The 
data set covers the period from 2006-2019 in which 
they set the horizon = 3, 6, 9, 12, 15, 18, 21, and 24, 
respectively. The RMSE values of a different model 
for different horizons are shown in table 3. The 

larger the horizons, the worse the predicted results. 
LSTM performs better than other neural network 
methods (RNN, CNN) and traditional models 
(ARIMA, VAR). Specifically, LSTM outperforms the 
neural baseline RNN, CNN, ARIMA, and VAR by 
6.52, 21.68, 91.70, and 91.69 % in the RMSE metric, 
respectively, when the horizon is 24, suggesting 
the much better performance of the LSTM method.

2.3 Comparison with other models

In this section, deep learning models are compared 
with other machine learning models and traditional 
models in table 4. In 2020, Sabu et al. proposed 
a predictive analysis in agriculture to predict 
commodity price forecasting in Kerala, India. It 
consists of the monthly data of arecanuts from 
14 districts of Kerala for the period 2007-2017. 
Consequently, LSTM outperformed SARIMA and 
holt-winter models with the lowest RMSE values.
Chen et al. (2021) compared LSTM, support vector 
regression, ARIMA, XGBoost, and Prophet. They 
considered the weekly price of tomatoes and chilli 
for 10 years (2009-2019). For tomato, LSTM obtained 
the lowest MSE among the models, followed by 
XGBoost, PROPHET, ARIMA, and lastly SVR. 
However, in the case of chilli price data, XGBoost 
had the lowest MSE, followed by LSTM.

Table 2: The training time of LSTM vs. GRU

Model The best case/s The worst case/s The average case/s
LSTM 393.01 400.57 396.27
GRU 354.92 379.57 365.40

Table 3: Evaluation of predictive model (RMSE) over multiple forecast horizons

Model 3 (RMSE) 6 (RMSE) 9 (RMSE) 12 (RMSE) 15 (RMSE) 18 (RMSE) 21 (RMSE) 24 (RMSE)
LSTM 0.0347 0.0444 0.0551 0.0636 0.0678 0.0721 0.0821 0.0831
RNN 0.0395 0.0522 0.0578 0.0703 0.0704 0.0784 0.0855 0.0889
CNN 0.0415 0.0514 0.0701 0.0738 0.1077 0.0895 0.1037 0.1061
ARIMA 1.0018 1.0006 1.0021 1.0029 1.0029 1.0022 1.0022 1.0013
VAR 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

Table 4: Comparison of models for vegetable Price data

Models
SVR
(MSE)

LSTM
(MSE)

ARIMA
(MSE)

XGBoost
(MSE)

Prophet
(MSE)

Tomato 0.674 0.378 0.538 0.583 0.691
chilli 0.641 0.438 0.752 0.432 0.456
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CoNCLUSIoN
In this review, we have presented several 
preliminary publications on the applications of 
RNNs in time series analysis and forecasting. As 
we have summarized, RNNs have been applied 
for forecasting time series data in most scientific 
and industrial fields, but mainly in commodity 
price forecasting. In addition, we present the 
structure, processing flow, and advantages of RNNs 
in this review. Furthermore, RNNs, such as the 
gated recurrent unit, LSTM neural network, and 
improvement models, can be powerful prediction 
alternatives to traditional neural networks and 
can obtain better prediction results. In the case of 
a single model, most studies explain that LSTM 
shows better performance than other machine 
learning models because it has internal memory 
to overcome the vanishing gradient problem. 
Comparisons between the deep learning models 
and other machine learning models conclude that 
LSTM was better used in predicting agricultural 
commodity price forecasts. This review provides 
useful guidance for RNN modelling and novel 
research fields in subsequent studies.
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