#### **Research Paper**



# Neural Networks as a Means to Study the Factors Having Influence on Adjusted Net Savings

## Yuliia Shevchenko

LLC "Systemnyy Elektronnyy Eksport", Kyiv, Ukraine

<sup>\*</sup>Corresponding author: scientificshevchenko@meta.ua (ORCID ID: 0000-0002-3602-1722)

Received: 12-01-2023

Revised: 22-04-2023

Accepted: 07-05-2023

#### ABSTRACT

The purpose of the study is to prove the existence of a relationship between the inflow of foreign direct investment, inflation and the level of income from taxation on adjusted net savings. The researchers used a combination of regression analysis and analogy with the human brain in terms of information intake and processing as well as any factors of biological nature. During the study, the author applied both general scientific and special methods: scientific abstraction, analysis and synthesis, historical and logical method, systematic approach, method of theoretical generalization and comparison. They used methods of regression analysis at the first stage of the study and the method of neural networks at the second stage to build an input-output model of investment in a particular country. They compared obtained results with each other and formulated a model of the possible impact of investment inflows to countries by transnational corporations. The results of the study confirm that the national and foreign investment policies of the host countries transform the role of investment in economic development while improving the standard of living in the countries studied. The author proved that the higher the tax burden in a country, the more the level of adjusted net savings changes.

#### HIGHLIGHTS

• The article is devoted to the main problems of transformation of the investment behaviour of transnational corporations under the influence of the sustainable development concept and the allocation of adjusted net savings as one of the most influential factors of changes in the attraction and accumulation of investments.

Keywords: Investment, investment behaviour, correlation, multinational corporations, regression analysis

In modern realities, technological advance is one of the most important reasons for the economic development of the country (Shrestha, 2012). Without a sufficiently high level of technology development, the country and its producers can no longer be competitive in the international market. However, this not only raises the living standards of the population, but also contributes to scientific development, while the expertise becomes the basis for building new inventions (Boon, 2006). The development of neural networks helped to form new conclusions based on the analysis of statistical data volumes. In general, neural networks are mathematical models (or their software or hardware embodiment) that function on the principle of building of biological neural networks of living organisms, also called the networks of nerve cells (Schramowski *et al.* 2020).

The study of P. Buckley and M. Casson (1998) demonstrates an interesting phenomenon when transnational corporations (TNCs) face new challenges that force them to transform the national system of host countries, namely uncertainty and

How to cite this article: Shevchenko, Y. (2023). Neural Networks as a Means to Study the Factors having Influence on Adjusted Net Savings. *Econ. Aff.*, **68**(Special Issue): 657-663.

Source of Support: None; Conflict of Interest: None

market volatility, coordination within joint ventures and business networks, competence of corporate managers at any level of the TNC and cooperation with employees of the corporation. In a later work, P. Buckley and M. Casson (2003) discussed possible risks, which require consideration.

J. Krenek et al. (2014) explore the general development of existing programs that allow making research using neural networks. X. Wang (2017) also worked on a similar topic, studying the role and prospects of neural networks, when O.I. Abiodun et al. (2018) focused on modern possibilities of using this technology in various scientific fields. A. Ruospo et al. (2021) pointed not only to the benefits of using neural networks to analyse statistical data but also to the existing shortcomings, in particular, problems in the context of forecasting. It is also worth mentioning the works that investigated other phenomena not related to net savings but using neural networks as well. E.C. Mamatzakis et al. (2022) studied changes in household lending during the COVID-19 pandemic while M. Barrachina (2021) investigated entrepreneurship development based on various variables.

The aim of the study is to prove the existence of the relationship between the inflow of foreign direct investment (FDI), inflation rate and the level of income from taxation on adjusted net savings (ANS) in the form of a combination of regression analysis using a neural network. The object of the study was the actual data volumes processed and analysed using neural networks.

## MATERIALS AND METHODS

In this paper, the author carried out regression analysis of the data and another analysis using neural networks. The countries making the subject of the study were USA, Chile, China, Germany and Ukraine as explained later in the text. Author presented all the collected data in tabular form for clarity. Further, author investigated the relationship between adjusted net savings and inflation, FDI inflows, tax income, and  $CO_2$  emissions in the countries analysed using Statistica 12.0 and Excel 2016 in the first stage of calculation by method of regression analysis. The data for the USA are shown in Table 1.

Data for Chile are shown in Table 2.

| Table 1: Data for r | egression ar | alysis and | neural 1 | networks | from | 2010-2018 | for the | USA |
|---------------------|--------------|------------|----------|----------|------|-----------|---------|-----|
|---------------------|--------------|------------|----------|----------|------|-----------|---------|-----|

| Vaar | FDI inflows, (BoP, | Inflation nato 9/ | Level of income tax | Adjusted net savings, | CO <sub>2</sub> emission, metric |
|------|--------------------|-------------------|---------------------|-----------------------|----------------------------------|
| Teal | current US\$)      | Inflation rate, % | revenue, % of GDP   | (current US\$)        | tons per capita                  |
| 2010 | 2.64039E+11        | 1.64              | 8.595888            | -62193544000          | 17.44286                         |
| 2011 | 2.63497E+11        | 3.15              | 9.573699            | 1.02312E+11           | 16.97696                         |
| 2012 | 2.50345E+11        | 2.06              | 9.796872            | 4.73529E+11           | 16.31047                         |
| 2013 | 2.88131E+11        | 1.46              | 10.51961            | 5.46362E+11           | 16.32348                         |
| 2014 | 2.51856E+11        | 1.62              | 10.95153            | 7.66533E+11           | 16.50284                         |
| 2015 | 5.09087E+11        | 0.11              | 11.2046             | 7.65609E+11           | 17.23184                         |
| 2016 | 4.94457E+11        | 1.26              | 10.98294            | 5.10637E+11           | 17.11206                         |
| 2017 | 3.54828E+11        | 2.13              | 11.94741            | 5.8149E+11            | 16.99227                         |
| 2018 | 2.67081E+11        | 2.44              | 10.40535            | 4.46041E+11           | 16.87248                         |

Note: BoP – balance of payments; GDP – gross domestic product; Source: World Bank Data (2022).

| Veer | FDI inflows, (BoP, | Inflation rate 9/ | Level of income tax | Adjusted net savings, | CO <sub>2</sub> emission, metric |
|------|--------------------|-------------------|---------------------|-----------------------|----------------------------------|
| Iear | current US\$)      | initation rate, % | revenue, % of GDP   | (current US\$)        | tons per capita                  |
| 2010 | 16019683111        | 1.41              | 17.35               | 26966367948           | 4.234476                         |
| 2011 | 24149598879        | 3.34              | 18.85               | 27188368529           | 4.598226                         |
| 2012 | 30292554797        | 3                 | 18.99               | 26719089880           | 4.653625                         |
| 2013 | 20824865443        | 1.78              | 17.38               | 25240705216           | 4.736431                         |
| 2014 | 23736252540        | 4.71              | 16.97               | 23161886125           | 4.649062                         |
| 2015 | 21055618323        | 4.34              | 17.44               | 21299122136           | 4.883101                         |
| 2016 | 12135710063        | 3.78              | 17.39               | 18653217394           | 4.976906                         |
| 2017 | 5852183238         | 2.18              | 17.41               | 17785439361           | 5.07071                          |
| 2018 | 6082221197         | 2.43              | 18.48               | 26381557011           | 5.164515                         |

Source: World Bank Data (2022).

Data for People's Republic of China (PRC) are shown in Table 3.

$$y = a_0 + a_1 X, \qquad \dots (1)$$

Data for Germany shown in Table 4.

Similarly, author presents data for Ukraine (Table 5).

Having consolidated all the necessary data for further research, we will calculate the regression analysis according to the following formula within the linear regression:

where: *y* is adjusted net savings; *X* is a certain factor under study; 
$$a_1$$
 and  $a_0$  are regression coefficients.

This function helps to determine the impact of a set of factors on adjusted net savings (*y*), namely: FDI inflow  $-x_{1'}$  inflation rate  $-x_{2'}$  level of income tax revenue  $-x_{3'}$  CO<sub>2</sub> emission  $-x_{4'}$  that means

| Year | FDI inflows, (BoP,<br>current US\$) | Inflation rate, % | Level of income tax<br>revenue, % of GDP | Adjusted net savings,<br>(current US\$) | CO <sub>2</sub> emission, metric<br>tons per capita |
|------|-------------------------------------|-------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| 2010 | 243703434558                        | 3.17              | 10.2120475                               | 1.98163E+12                             | 6.56052                                             |
| 2011 | 280072219150                        | 5.55              | 10.3127945                               | 2.2319E+12                              | 7.241515                                            |
| 2012 | 241213868161                        | 2.61              | 10.9159845                               | 2.36891E+12                             | 7.424751                                            |
| 2013 | 290928431467                        | 2.62              | 9.90773308                               | 2.46665E+12                             | 7.557211                                            |
| 2014 | 268097181064                        | 1.92              | 9.71306785                               | 2.65924E+12                             | 7.543908                                            |
| 2015 | 242489331627                        | 1.43              | 9.41608683                               | 2.63468E+12                             | 7.377379                                            |
| 2016 | 174749584584                        | 2                 | 9.20099957                               | 2.51151E+12                             | 7.623849                                            |
| 2017 | 166083755722                        | 1.59              | 8.95517645                               | 2.76513E+12                             | 7.870319                                            |
| 2018 | 203492014029                        | 2.07              | 8.71345829                               | 2.68967E+12                             | 8.116789                                            |

Source: World Bank Data (2022).

#### Table 4: Data for regression analysis and neural networks for 2010-2018 for Germany

| Year | FDI inflows, (BoP,<br>current US\$) | Inflation rate, % | Level of income tax<br>revenue, % of GDP | Adjusted net savings,<br>(current US\$) | CO <sub>2</sub> emission, metric<br>tons per capita |
|------|-------------------------------------|-------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| 2010 | 86053684912                         | 1.1               | 11.11579                                 | 2.52611E+11                             | 9.279634                                            |
| 2011 | 97480731020                         | 2.07              | 11.44178                                 | 3.58532E+11                             | 9.124859                                            |
| 2012 | 65464274951                         | 2                 | 11.57121                                 | 3.01202E+11                             | 9.1993                                              |
| 2013 | 67407574807                         | 1.5               | 11.55001                                 | 3.11359E+11                             | 9.390623                                            |
| 2014 | 19778357284                         | 0.9               | 11.43902                                 | 3.6874E+11                              | 8.88937                                             |
| 2015 | 62462264553                         | 0.51              | 11.34788                                 | 3.55389E+11                             | 8.789557                                            |
| 2016 | 62617264989                         | 0.49              | 11.18187                                 | 3.74476E+11                             | 8.692102                                            |
| 2017 | 83415033637                         | 1.5               | 11.35656                                 | 3.94701E+11                             | 8.594648                                            |
| 2018 | 1.05277E+11                         | 1.73              | 11.31653                                 | 3.65221E+11                             | 8.497194                                            |

Source: World Bank Data (2022).

| Table 5: Data for regres | ssion analysis and | d neural networks | from 2010-2018 for | Ukraine |
|--------------------------|--------------------|-------------------|--------------------|---------|
|--------------------------|--------------------|-------------------|--------------------|---------|

| Year | FDI inflows, (BoP,<br>current US\$) | Inflation rate, % | Level of income tax<br>revenue, % of GDP | Adjusted net savings,<br>(current US\$) | CO <sub>2</sub> emission, metric<br>tons per capita |
|------|-------------------------------------|-------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| 2010 | 6451000000                          | 9.372931          | 15.57052                                 | 4391013276                              | 6.64135                                             |
| 2011 | 7207000000                          | 7.955725          | 18.51505                                 | 3795214107                              | 6.265962                                            |
| 2012 | 8175000000                          | 0.568728          | 18.31656                                 | 500413570.2                             | 6.487603                                            |
| 2013 | 4509000000                          | -0.23895          | 17.56138                                 | -8134029767                             | 5.976642                                            |
| 2014 | 847000000                           | 12.07186          | 17.29435                                 | -3371033613                             | 5.020747                                            |
| 2015 | 305000000                           | 48.69986          | 20.45137                                 | 3315383474                              | 5.182218                                            |
| 2016 | 3441000000                          | 13.91271          | 19.63012                                 | 4246172254                              | 5.013495                                            |
| 2017 | 2827000000                          | 14.43832          | 20.03453                                 | 6534362791                              | 4.844772                                            |
| 2018 | 2476000000                          | 10.95186          | 20.48092                                 | 4130777311                              | 4.676049                                            |

Source: World Bank Data (2022).

how much the second parameter will change on average when the first one changes by a certain unit of measurement.

In this case, it can be distinguished two hypotheses: H1: adjusted net savings are most affected by FDI inflows and level of income tax revenues in the USA and Germany; H2: adjusted net savings are most affected by FDI inflows and  $CO_2$  emissions in PRC and USA.

Having found the dependence between the adjusted net savings and the studied factors in these countries, author calculates the following formula using the neural network method:

$$o(X) = f(w \downarrow o + w \downarrow 1f)$$
$$(w \downarrow 01 + \sum i = 1 \uparrow 4 + w \downarrow i'1) \qquad \dots (2)$$

where: *o* denotes the adjusted net savings;  $w \downarrow i$  denotes the weight (output neuron);  $x \downarrow i$  denotes the input *i* for *i* = 1.2.3.4;  $w \downarrow 0$  is the intercept (output neuron);  $w \downarrow 01$  is the intercept of the hidden neuron;  $w \downarrow 1$  is the synaptic weight corresponding to the synapse starting from the hidden neuron and leading to the output neuron.

Thus, using these two methods author finds the dependence and calculate the main consequences of the influence of the studied factors.

## RESULTS

The international economists consider investments as one of the sources of development and scientific and technological progress (Natera and Castellacci, 2021). International investment occurs due to the transfer of capital by a certain subject of international economic relations to a profitable and allegedly almost risk-free investment object. In this study, it was interesting to use the method of neural networks and regression analysis to identify the influence of such factors as inflow of foreign direct investment, inflation rate, level of tax income (% of GDP) on adjusted net savings in the countries as USA, Chile, China, Germany and Ukraine (Table 6).

For the calculation, the author used statistical information of Ukraine for the period 1990-2018, which is associated with the greatest completeness of the data found and the beginning of the development of the economic system of Ukraine (Table 7).

The designed neural network model aims to analyse the influence of carbon dioxide emissions, income tax revenue, inflation rate, and FDI inflow on adjusted net savings. Now author interprets this neural network in the mathematical dimension. Having conducted the research, author presents results in Table 8.

These calculations confirm hypothesis that there is a strong relationship between selected factors and adjusted net savings. For four countries, the correlation almost reaches 1, revealing a close dependence. In Ukraine there is an average closeness of connection, confirmed by both regression analysis and the use of neural networks.

### DISCUSSION

The scientists W.S. McCulloch and W. Pitts (1943) first used the term "neural networks" in 1943 during the study of the composition of the neutron, which

| No. | Name of TNC                 | Country of origin | Field of activity   | Expenditures on development and<br>innovation, US\$ billion |
|-----|-----------------------------|-------------------|---------------------|-------------------------------------------------------------|
| 1   | Amazon.com, Inc.            | USA               | Technology industry | 28.8                                                        |
| 2   | Alphabet Inc.               | USA               | Technology industry | 21.4                                                        |
| 3   | Samsung Electronics Co, Ltd | South Korea       | Technology industry | 16.5                                                        |
| 4   | Huawei Technologies         | PRC               | Technology industry | 15.3                                                        |
| 5   | Microsoft Corp              | USA               | Technology industry | 14.7                                                        |
| 6   | Apple Inc.                  | USA               | Technology industry | 14.2                                                        |
| 7   | Intel Corp                  | USA               | Technology industry | 13.5                                                        |
| 8   | Roche Holding AG            | Switzerland       | Pharmaceutical      | 12.3                                                        |
| 9   | Johnson and Johnson         | USA               | Pharmaceutical      | 10.8                                                        |
| 10  | Toyota Motor Corp           | Japan             | Motor Vehicle       | 10.0                                                        |

Table 6: Top 10 largest TNC investors in development by country of origin in 2019

Source: World Investment Report: Special Economic Zones (2019).

| Ukraine              |                                                            |                                               |                                               |                                        | Germany                                                    |                                                  |                                               |                                        |  |
|----------------------|------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------|--|
| Indicators           | Impact on<br>the ANS<br>of the CO <sub>2</sub><br>emission | Impact on the<br>ANS of income<br>tax revenue | Impact on the<br>ANS of the<br>inflation rate | Impact on<br>the ANS of<br>FDI inflows | Impact on<br>the ANS<br>of the CO <sub>2</sub><br>emission | Impact on<br>the ANS of<br>income tax<br>revenue | Impact on the<br>ANS of the<br>inflation rate | Impact on<br>the ANS of<br>FDI inflows |  |
| Multiple R           | 0.24767                                                    | 0.02950062                                    | 0.155337                                      | 0.449648                               | 0.755976                                                   | 0.246002                                         | 0.19422                                       | 0.172852                               |  |
| R Square             | 0.06134                                                    | 0.00087028                                    | 0.02413                                       | 0.202183                               | 0.5715                                                     | 0.060517                                         | 0.037721                                      | 0.029878                               |  |
| Adjusted R<br>Square | 0.023794                                                   | -0.03909490                                   | -0.01491                                      | 0.170271                               | 0.555629                                                   | 0.025721                                         | 0.002081                                      | -0.00605                               |  |
| Standard Error       | 5.28E+09                                                   | 5451536490                                    | 5.39E+09                                      | 4.87E+09                               | 7.03E+10                                                   | 1.04E+11                                         | 1.05E+11                                      | 1.06E+11                               |  |
| Observations         | 27                                                         | 27                                            | 27                                            | 27                                     | 29                                                         | 29                                               | 29                                            | 29                                     |  |
|                      |                                                            | USA                                           |                                               |                                        | PRC                                                        |                                                  |                                               |                                        |  |
| Multiple R           | 0.021644                                                   | 0.757366                                      | 0.145278                                      | 0.371842                               | 0.989559                                                   | 0.861185                                         | 0.273845                                      | 0.934183                               |  |
| R Square             | 0.000468                                                   | 0.573604                                      | 0.021106                                      | 0.138267                               | 0.979227                                                   | 0.741639                                         | 0.074991                                      | 0.872697                               |  |
| Adjusted R<br>Square | -0.03655                                                   | 0.557812                                      | -0.01515                                      | 0.106351                               | 0.978458                                                   | 0.73207                                          | 0.040731                                      | 0.867982                               |  |
| Standard Error       | 2.49E+1                                                    | 1.63E+11                                      | 2.46E+11                                      | 2.31E+11                               | 1.5E+11                                                    | 5.29E+11                                         | 1E+12                                         | 3.71E+11                               |  |
| Observations         | 29                                                         | 29                                            | 29                                            | 29                                     | 29                                                         | 29                                               | 29                                            | 29                                     |  |
|                      |                                                            | Chile                                         |                                               |                                        |                                                            |                                                  |                                               |                                        |  |
| Multiple R           | 0.823549                                                   | 0.762726                                      | 0.53895                                       | 0.825644                               |                                                            |                                                  |                                               |                                        |  |
| R Square             | 0.678234                                                   | 0.581751                                      | 0.290467                                      | 0.681688                               |                                                            |                                                  |                                               |                                        |  |
| Adjusted R<br>Square | 0.666316                                                   | 0.566261                                      | 0.264188                                      | 0.669899                               |                                                            |                                                  |                                               |                                        |  |
| Standard Error       | 5.01E+09                                                   | 5.71E+09                                      | 7.44E+09                                      | 4.98E+09                               |                                                            |                                                  |                                               |                                        |  |
| Observations         | 29                                                         | 29                                            | 29                                            | 29                                     |                                                            |                                                  |                                               |                                        |  |

Table 7: Calculations of correlation and regression analysis for selected countries

*Note: ANS* – *adjusted net savings; Source: compiled by the author.* 

#### Table 8: Calculated neural networks for the studied countries

|            |                   |               |                  |                | Germany      |                     |                       |                   |                      |                      |
|------------|-------------------|---------------|------------------|----------------|--------------|---------------------|-----------------------|-------------------|----------------------|----------------------|
| Net name   | Training<br>perf. | Test<br>perf. | Validation perf. | Training error | Test error   | Validation<br>error | Training<br>algorithm | Error<br>function | Hidden<br>activation | Output<br>activation |
| MLP 4-3-1  | 0.984879          | 0.980711      | 0.968144         | 1.577843E+20   | 5.274275E+20 | 8.145437E+20        | BFGS 38               | SOS               | Tanh                 | Exponential          |
| MLP 4-6-1  | 0.951877          | 0.940024      | 0.976485         | 4.972433E+20   | 1.846033E+21 | 7.955451E+20        | BFGS 29               | SOS               | Tanh                 | Tanh                 |
| MLP 4-6-1  | 0.939664          | 0.967600      | 0.951550         | 6.111736E+20   | 8.973036E+20 | 1.578438E+21        | BFGS 19               | SOS               | Tanh                 | Identity             |
| MLP 4-6-1  | 0.964880          | 0.985018      | 0.991252         | 3.566486E+20   | 1.817476E+21 | 2.579622E+20        | BFGS 55               | SOS               | Logistic             | Exponential          |
| MLP 4-7-1  | 0.868244          | 0.954256      | 0.927423         | 1.280748E+21   | 4.123503E+21 | 7.276008E+20        | BFGS 12               | SOS               | Identity             | Exponential          |
|            |                   |               |                  |                | USA          |                     |                       |                   |                      |                      |
| MLP 4-4-1  | 0.815670          | 0.919354      | 0.979397         | 2.608472E+22   | 1.109925E+21 | 2.865651E+21        | BFGS 4                | SOS               | Tanh                 | Exponential          |
| MLP 4-10-1 | 0.952578          | 0.949515      | 0.993302         | 3.239548E+21   | 1.763247E+21 | 3.461837E+21        | BFGS 31               | SOS               | Tanh                 | Logistic             |
| MLP 4-4-1  | 0.814113          | 0.931374      | 0.977190         | 3.195639E+22   | 5.274994E+21 | 7.386769E+21        | BFGS 2                | SOS               | Logistic             | Sine                 |
| MLP 4-5-1  | 0.832138          | 0.970057      | 0.976006         | 1.853762E+22   | 9.981057E+20 | 1.438293E+21        | BFGS 3                | SOS               | Exponential          | Exponential          |
| MLP 4-10-1 | 0.835789          | 0.941558      | 0.981181         | 2.409423E+22   | 8.674856E+20 | 2.290611E+21        | BFGS 2                | SOS               | Tanh                 | Identity             |
|            |                   |               |                  |                | China        |                     |                       |                   |                      |                      |
| MLP 4-4-1  | 0.995828          | 0.999498      | 0.999167         | 4.313973E+21   | 9.307418E+20 | 4.317030E+21        | BFGS 17               | SOS               | Tanh                 | Logistic             |
| MLP 4-7-1  | 0.997136          | 0.999056      | 0.999985         | 2.892181E+21   | 1.682798E+21 | 1.699190E+21        | BFGS 25               | SOS               | Logistic             | Logistic             |
| MLP 4-9-1  | 0.993285          | 0.999022      | 0.999644         | 7.305140E+21   | 2.548677E+21 | 3.363920E+21        | BFGS 15               | SOS               | Logistic             | Exponential          |
| MLP 4-9-1  | 0.998430          | 0.999813      | 0.999394         | 1.510221E+21   | 3.819908E+21 | 2.428537E+21        | BFGS 42               | SOS               | Tanh                 | Exponential          |
| MLP 4-4-1  | 0.996362          | 0.999603      | 0.999343         | 4.005232E+21   | 5.573595E+20 | 2.819643E+21        | BFGS 11               | SOS               | Identity             | Logistic             |
|            |                   |               |                  |                | Chile        |                     |                       |                   |                      |                      |
| MLP 4-5-1  | 0.980708          | 0.979410      | 0.976295         | 1.354039E+18   | 4.378586E+18 | 5.518159E+18        | BFGS 22               | SOS               | Logistic             | Logistic             |
| MLP 4-7-1  | 0.986551          | 0.995561      | 0.964121         | 9.698367E+17   | 1.816398E+18 | 2.475650E+18        | BFGS 30               | SOS               | Logistic             | Exponential          |
| MLP 4-7-1  | 0.989836          | 0.969475      | 0.955727         | 7.209669E+17   | 5.521654E+18 | 9.788406E+18        | BFGS 30               | SOS               | Tanh                 | Identity             |
| MLP 4-4-1  | 0.982815          | 0.961128      | 0.954276         | 1.270482E+18   | 4.605849E+18 | 5.077883E+18        | BFGS 12               | SOS               | Tanh                 | Exponential          |
| MLP 4-9-1  | 0.994136          | 0.950273      | 0.990851         | 4.129874E+17   | 5.037762E+18 | 7.508289E+18        | BFGS 34               | SOS               | Tanh                 | Identity             |



| Ukraine    |          |          |           |              |              |              |         |     |          |             |
|------------|----------|----------|-----------|--------------|--------------|--------------|---------|-----|----------|-------------|
| MLP 4-9-1  | 0.685608 | 0.756626 | -0.256766 | 5.555549E+18 | 1.938058E+19 | 1.032254E+19 | BFGS 11 | SOS | Identity | Exponential |
| MLP 4-3-1  | 0.727953 | 0.783054 | -0.133317 | 4.955995E+18 | 1.910629E+19 | 8.027901E+18 | BFGS 14 | SOS | Tanh     | Exponential |
| MLP 4-3-1  | 0.765678 | 0.790200 | -0.005817 | 4.539512E+18 | 1.949601E+19 | 6.477883E+18 | BFGS 19 | SOS | Tanh     | Logistic    |
| MLP 4-10-1 | 0.686090 | 0.756265 | -0.274904 | 5.544982E+18 | 1.962097E+19 | 1.020061E+19 | BFGS 11 | SOS | Identity | Exponential |
| MLP 4-9-1  | 0.853414 | 0.930389 | 0.499914  | 2.879740E+18 | 1.700802E+19 | 3.343131E+18 | BFGS 37 | SOS | Tanh     | Exponential |
| <u> </u>   |          | .1       |           |              |              |              |         |     |          |             |

*Source*: Compiled by the author.

the economists took as a basis for the formation of the future model. A. Sukhadeve (2017) noted that the neural networks in the computational world exist in the layers consisting of interconnected nodes that contain an activation function.

J. Krenek et al. (2014) investigate neural networks as a means of calculating considerable amounts of data. The authors describe a large number of tools for the development and management of artificial neural networks. X. Wang (2017) also explores the current state of development of neural networks. The scientist pays attention to the increasing role they are beginning to play in scientific research and how much they simplify data processing. A study conducted by O.I. Abiodun et al. (2018) has also shown that neural networks have very significant use among different scientific disciplines and applicable for different purposes. When studying the performance of neural networks, A. Ruospo et al. (2021) conclude that they are resistant to certain types of errors but have problems with predicting future trends.

The neural networks have wide application in study by E.C. Mamatzakis *et al.* (2022) on changes in household debt as a reaction to events related to the onset of the COVID-19 crisis. Using a vector autoregression model (VAR model), the researchers were able to conclude that household debt will decrease due to COVID-19 mortality, although only in the short term. M. Barrachina (2021) provided advice for the formation of entrepreneurship development policy based on the analysis of various economic, fiscal and educational variables.

J.E. Stiglitz *et al.* (2009) proposed to estimate the level of investment using adjusted net savings, which reflects the balance of payments as a basis for assessing investment inflows. D. Plikynas and Y.H. Akbar (2006) suggested to explore investment activity in the context of inflows using neural networks as they show all the complexity of the process as well as the factors influencing the optimal

investment decision and saving of own investments within the host country. H.A. Bobenič *et al.* (2018) studied the indicators of the dependence of risk investment using statistical methods with account of the error and found that only 12 studied models were effective and their factors can correlate with foreign direct investment.

G. Săvoiu and M. Țaicu (2014) reveal the methods of neural networks research and give examples in graphical and mathematical form. The authors came to the conclusion about the high role of FDI as a factor of development even in times of recession. M. Qasim and A. Grimes (2018) covered models of the impact on adjusted net savings. This indicator was the main factor for assessing the total objective well-being.

## CONCLUSION

The neural network is an interpretation and analogy with human brain activity, when external factors affecting neurons produce certain response to these stimuli. In the course of the study, the use of neural networks in economics, namely the study of tight connection turned out to be more accurate. This reveals the strong nature of the impact of the selected factors on adjusted net savings. The learning function gave us the opportunity to identify not only a linear relationship but also a logical, exponential and hyperbolic connection. It should be noted that investment activity really contains a high potential for development, as investments affect the experience of host countries, provide an opportunity to transform the staff of national corporations into highly qualified human capital and turn their own capital-intensive technologies into innovative technologies and nanotechnologies.

Study confirms the effectiveness of using the neural network method in comparison with regression analysis. Therefore, reimagining the indicator of economic development in favour of adjusted net savings is tangible and redeemable. The author thinks that the creation of new estimation models using neural networks is relevant for future research as well as finding new opportunities for using the indicator of adjusted net savings to assess the economic development of the country.

## REFERENCES

- Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A. and Arshad, H. 2018. State-of-the-art in artificial neural network applications: A survey. *Hel.*, 4(11): e00938.
- Barrachina, M. 2021. Empirical International Entrepreneurship. A Handbook of Methods, Approaches, and Applications. International entrepreneurship rate prediction using neural networks. Springer, Berlin.
- Bobenič, H.A., Bruothová, M., Kubíková, Z. and Ručinský, R. 2018. Determinants of foreign direct investment inflows: A case of the Visegrad countries. *J. of Inter. Stud.*, **11**(2): 222-235.
- Boon, M. 2006. How Science Is Applied in Technology. *Inter. Stud. in the Phil. of Sci.*, **20**(1): 27-47.
- Buckley, P. and Casson, M. 1998. Models of the Multinational Enterprise. J. of Inter. Bus. Stud., **29**: 21-44.
- Buckley, P. and Casson, M. 2003. The Future of the Multinational Enterprise in retrospect and in prospect. *J. of Inter. Bus. Stud.*, **34**: 219-222.
- Krenek, J., Kuca, K., Krejcar, O., Maresova, P., Sobeslav, V. and Blazek, P. 2014. Artificial Neural Network Tools for Computerised Data Modeling and Processing. *Conference: CINTI2014*, 1: 1-6.
- Mamatzakis, E.C., Ongena, S. and Tsionas, M.G. 2022. *The response of household debt to COVID-19 using a neural networks VAR in OECD*. https://link.springer.com/ article/10.1007/s00181-022-02325-2. (Last Accessed on 31<sup>th</sup> December, 2022).
- McCulloch, W.S. and Pitts, W. 1943. A logical calculus of the ideas immanent in nervous activity. *Bul. of Math. Biop.*, 5: 115.
- Natera, J.M. and Castellacci, F. 2021. Transformational complexity, systemic complexity and economic development. *Res. Pol.*, **50**(7): 104275.

- Plikynas, D. and Akbar, Y.H. 2006. Neural Network Approaches to Estimating FDI Flows: Evidence from Central and Eastern Europe. *East. Eur. Econ.*, **44**(3): 29-59.
- Qasim, M. and Grimes, A. 2018. Sustainable economic policy and well-being: The relationship between adjusted net savings and subjective well-being. Motu Economic and Public Policy Research, Wellington.
- Ruospo, A., Sanchez, E., Traiola, M., O'Connor, I. and Bosio, A. 2021. Investigating data representation for efficient and reliable Convolutional Neural Networks. *Micr. and Micros.*, 86: 104318.
- Săvoiu, G. and Țaicu, M. 2014. Foreign direct investment models, based on country risk for some post-socialist Central and Eastern European economies. *Proc. Econ. and Fin.*, **10**: 249-260.
- Schramowski, P., Stammer, W., Teso, S., Brugger, A., Herbert, F., Shao, X., Luigs, H.-G., Mahlein, A.-K. and Kersting, K. 2020. Making deep neural networks right for the right scientific reasons by interacting with their explanations. *Nat. Mach. Intel.*, 2: 476-486.
- Shrestha, R. 2012. Information Technology: The Gateway for the Development of Nation. Department of Computer and Electronics Engineering, Kantipur City College Putalisadak, Kathmandu.
- Stiglitz, J.E., Sen, A.K. and Fitoussi, J.-P. 2009. Report by the commission on the measurement of economic performance and social progress. https://goo.su/Sysa. (Last Accessed on 31<sup>th</sup> December, 2022).
- Sukhadeve, A. 2017. Understanding Neural Network: A beginner's guide. https://www.datasciencecentral.com/profiles/blogs/ understanding-neural-network-a-beginner-s-guide. (Last Accessed on 31<sup>th</sup> December, 2022).
- Wang, X. 2017. Overview of the Research Status on Artificial Neural Networks. In: 2nd International Forum on Management, Education and Information Technology Application (pp. 351-356). Dordrecht: Atlantis Press.
- World Bank Data. 2022. https://data.worldbank.org/.(Last Accessed on 31<sup>th</sup> December, 2022).
- World Investment Report: Special Economic Zones. 2019. https://unctad.org/system/files/official-document/ wir2019\_en.pdf. (Last Accessed on 31<sup>th</sup> December, 2022).